The Nano-Micro Interface: Bridging the Micro and Nano Worlds
暫譯: 奈米-微米介面:連接微觀與奈觀世界
Hans-Jorg Fecht, atthias Werner
- 出版商: Wiley
- 出版日期: 2004-12-20
- 售價: $2,147
- 語言: 英文
- 頁數: 351
- 裝訂: Hardcover
- ISBN: 3527309780
- ISBN-13: 9783527309788
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$880$695 -
$450$297 -
$720$612 -
$680$578 -
$560$476 -
$2,230$2,119 -
$750$638 -
$149$149 -
$480$408 -
$650$507 -
$450$383 -
$680$578 -
$450$356 -
$249$212 -
$1,029Computer Science: An Overview, 8/e (IE) (美國版0321247264)
-
$149$127 -
$200$158 -
$590$460 -
$300$237 -
$950$751 -
$1,615CCNA Cisco Certified Network Associate Study Guide, 5/e (640-801)
-
$580$452 -
$560$437 -
$790$672 -
$580$458
相關主題
商品描述
Description:
Two exciting worlds of science and technology - the nano and micro dimensions. The former is a booming new field of research, the latter the established size range for electronics, and for mutual technological benefit and future commercialization, suitable junctions need to be found.
Functional nanostructures such as DNA computers, sensors, neural interfaces, nanooptics or molecular electronics need to be wired to their 'bigger' surroundings. Coming from the opposite direction, microelectronics have experienced an unprecedented miniaturization drive in the last decade, pushing ever further down through the micro size scale towards submicron circuitry. Bringing these two worlds together is a new interdisciplinary challenge for scientists and engineers alike - recognized and substantially funded by the European Commission and other major project initiators worldwide.
This book offers a wide range of information from technologies to materials and devices as well as from research to administrative know-how collected by the editors from renowned key members of the nano/micro community.
Table of Contents:
Preface.
List of Contributors.
I Nanotechnology Research Funding and Commercialization Prospects U.S. National Nanotechnology Initiative: Planning for the Next Five Years (Mihail C. Roco).
1 Introduction.
2 Government R&D Investments.
References.
Technological Marketing for Early Nanotechnologies (Murielle Batude-Thibierge).
1 Introduction.
1.1 Managerial Synthesis with Recommendations.
1.2 Working Definitions.
1.3 Setting the Scene.
1.4 “Raison d’être” of Marketing, Especially for Nanotechnologies at Early Stages.
1.5 “Raison d’être” of Management Thinking and Strategic Planning for Nanotechnologies.
1.6 Problematic Nanotechnologies.
2 Marketing for a Nanotechnological Innovation.
2.1 Marketing Study Budget.
2.2 Collecting Information for Marketing Tools.
2.3 Technical Analysis.
2.4 Commercial Analysis.
2.5 Defining a Price.
2.6 Quantified Diagnostic and Simulations.
3 Management Thinking and Strategic Planning for Small Nanotechnology Businesses.
3.1 Strategic Planning: from Segment Action Plan to Business Action Plan.
3.2 Co-Developing with a Big Player.
3.3 Mastering the Translation Process.
3.4 Formulating a Strategy.
3.5 Implementing the Strategy.
4 Conclusions.
5 Appendix.
References.
Asia–Pacific Nanotechnology: Research, Development, and Commercialization (Lerwen Liu).
1 Nanotechnology Funding in the Asia–Pacific Region.
2 Commercialization Efforts.
3 Private Investment in Nanotechnology.
4 Advantages of Collaborating with Asians.
5 Appendix.
Cooperation with Small- and Medium-Sized Enterprises Boosts Commercialization (Torsten Schmidt).
1 The Company.
2 Scope.
3 Proposition: In Current Technology Markets, Commercial Success of New Product Ideas Evolves from Cooperation.
4 Proposition: Innovations Get on a Fast Track to Market if Implemented in SME.
5 Proposition: Competencies of SME and Inventors are Complementary Rather than Competing.
6 Summary.
References.
Rapid Commercialization of Nanotechnology in Japan: from Laboratory to Business (Hiromichi MaenoI).
1 Background: Japan at the Crossroads.
2 Motivation and Strategy: Shake up Unique People.
3 Research and Development of a New Idea.
4 Pump Priming and Leadership.
5 Nanotechnology Activities.
5.1 Bio Nanotec Research Institute, Inc. (BNRI): Zeolite Membranes.
5.2 Carbon Nanotech Research Institute, Inc. (CNRI): Clean Single-Walled Carbon Nanotubes.
5.3 Device Nanotech Research Institute, Inc. (DNRI).
5.4 Ecology Nanotech Research Institute (ENRI): Metallofullerene.
5.5 INRI, Inc. (for Intellectual Property): Approach and Strategy.
6 Conclusions.
Nanomaterials and Smart Medical Devices (Ottilia Saxl).
1 Introduction.
2 Why are we Seeing Advances Now?
3 Conclusion.
II Fundamentals and Technology Bridging Dimensional and Microstructural Scaling Effects (Uwe Erb, Cedric Cheung, Mohammadreza Baghbanan, and Gino Palumbo).
1 Introduction.
2 Nanocrystalline Materials.
3 Nano/Microsystem Technology.
4 Present Gap Between Nanomaterials and Nano/Microsystem Technology.
5 Bridging Dimensional and Microstructural Scaling Effects.
6 Conclusions.
References.
Bridging the Gap between Nanometer and Meter (Matthias Meyer, Jürgen Koglin, and Thomas Fries).
1 Introduction.
2 Motivation.
3 Bridging the Gap.
4 Examples of Measurement.
4.1 Structured Si Wafer.
4.2 Bump Measurements.
4.3 LED Housing.
4.4 Film Thickness Measurement.
4.5 Elastic Properties with AFAM.
References.
Nanometer-Scale View of the Electrified Interface: Scanning Probe Microscopy Study (Peter Müller, Laura Rossi, and Santos F. Alvarado).
1 Introduction.
2 STM z–V Spectroscopy.
3 Experimental Details.
3.1 Alq3 Thin Films on Au(111).
3.2 CuPc Thin Films on Au(111).
4 Concluding Remarks.
References.
New Technology for an Application-Specific Lab-on-a-Chip (Heike Schäfer, Steffen Chemnitz, Konstantin Seibel, Volodymyr Koziy, Alexander Fischer, Dietmar Ehrhardt, and Markus Böhm).
1 Introduction.
2 Fabrication Technologies.
3 Experimental Results.
3.1 Amorphous Silicon Pin-Diodes.
3.2 Amorphous Silicon Thin Film Transistors.
3.3 Microfluidic Devices.
4 Conclusions.
References.
Impact of Nanoscience on Heterogeneous Catalysis (Sharifah Bee Abd Hamid and Robert Schlögl).
1 Introduction.
2 Nanotechnology in Catalysis.
3 Electronic Structure and Catalysis.
4 Geometric Structure and Catalysis.
5 Large Nano-Objects in Catalysis.
6 The Semiconductor Approach.
7 The Combicat Approach.
8 Conclusions.
References.
Biomimetic Nanoscale Structures on Titanium (Ralf-Peter Franke).
1 Introduction.
2 Biocompatibility.
References.
Microwave-Driven Hydrothermal Synthesis of Oxide Nanopowders for Applications in Optoelectronics (Witold Lojkowski, Agnieszka Opalinska, Tomasz Strachowski, Adam Presz, Stanislaw Gierlotka, Ewa Grzanka, Bogdan Palosz, Wieslaw Strek, Dariusz Hreniak, Larisa Grigorjeva, Donats Millers, Federica Bondioli, Cristina Leonelli, and Edward Reszke).
1 Introduction.
2 Experimental Methods.
2.1 The Reactor for the Synthesis of Nanopowders.
2.2 Hydrothermal Synthesis of ZnO, ZrO<sub>2</sub>, and Zr<sub>1–x</sub>Pr<sub>x</sub>O<sub>2</sub>.
2.3 Characterization of the Powders.
2.4 Sol-Gel Synthesis of YAG doped with 1% Nd.
2.5 Investigations of Luminescence Properties.
2.6 Sintering.
3 Results and Discussion.
3.1 The Properties of the Powders.
3.2 Investigations of Luminescence.
3.3 Luminescence of Sintered and Not Sintered YAG Nanocrystals.
4 Conclusions.
References.
New Approach to Improve the Piezoelectric Quality of ZnO Resonator Devices by Chemomechanical Polishing (Jyrki Molarius, Martin Kulawski, Tuomas Pensala, and Markku Ylilammi).
1 Introduction.
2 Experimental.
3 Results and Discussion.
4 Conclusions.
References.
Self-Assembled Semiconductor Nanowires (Theodore I. Kamins).
1 Introduction.
2 Growth.
3 Positioning Nanowires.
3.1 Stability.
4 Transistors and Sensors.
4.1 Interface Control and Insulator Material.
4.2 Device Stability.
4.3 Doping.
4.4 Device Physics.
4.5 Mobility.
4.6 Contacts.
5 Conclusion.
References.
3D Nanofabrication of Rutile TiO<sub>2</sub> Single Crystals with Swift Heavy-Ions (Koichi Awazu, Ken-ichi Nomura, Makoto Fujimaki, and Yoshimichi Ohki).
1 Introduction.
2 Experimental.
3 Results.
4 Discussion.
5 Conclusions.
References.
III Applications
Nanoparticles-Based Chemical Gas Sensors for Outdoor Air Quality Monitoring (Marie-Isabelle Baraton and Lhadi Merhari).
1 Objectives.
2 Current Status of Semiconductor Sensors.
3 New Paradigms for the Advancement of Semiconductor Sensors.
3.1 Advantage of Using Nanoparticles.
3.2 Control of the Physical and Chemical Properties of Nanoparticles.
3.3 Optimization of the Screen-Printing Process.
4 Results.
4.1 Characterization of Nanoparticles.
4.2 Surface Chemistry of Nanoparticles.
4.3 Rapid Screening of the Sensing Potential of the Nanoparticles.
4.4 First Optimization Stage of the Screen-Printing Process.
4.5 Second Optimization Stage of the Screen-Printing Process.
5 Outlook.
References.
Amorphous Electrically Conducting Materials for Transducer Applications (Alex Dommann, Marco Cucinelli, Matthias Werner, and Marc-Aurele Nicolet).
1 Introduction.
2 Mictamict Alloys.
3 Thin Films.
4 Properties of Ta–Si–N Films.
5 MEMS of Ta–Si–N Films.
6 Surface Micromachining of Ta–Si–N Microbeams.
7 X-Ray Analysis of Ta–Si–N Films.
8 Ta–Si–N Thin Films as Diffusion Barriers for Cu Metallization.
References.
Commercial Applications of Diamond-Based Nano- and Microtechnology (Peter Gluche, André Flöter, Stephan Ertl, and Hans-Jörg Fecht).
1 Introduction.
1.1 Properties of Diamond.
1.2 Synthesis of Diamond.
2 Commercial Applications: Cutting Tools and Micromechanical Diamond Parts 251
2.1 Diamond Cutting Tools.
2.2 Diamond Micromechanical Parts.
3 Summary.
References.
Bio-Inspired Anti-reflective Surfaces by Imprinting Processes (Thomas Sawitowski, Norbert Beyer, and Frank Schulz).
1 Introduction.
2 Aluminum Oxide: Template and Lithographic Tool.
3 Reflection of Light.
4 Anti-reflective Coatings and Surface Structures.
4.1 Plasma Coating.
4.2 Porous Ceramics.
4.3 Moth-Eye Structures.
5 Surface Wetting.
6 Conclusions.
References.
Preparation and Properties of MgO–Ni(Fe) Nanocrystalline Composites (Oldřich Schneeweiss, Naděžda Pizúrová, Yvonna Jirásková, and Tomáš Žák).
1 Introduction.
2 Experimental.
3 Results and Discussion.
4 Conclusions.
References.
Nanocrystalline Oxides Improve the Performances of Polymeric Electrolytes (Silvia Licoccia and Enrico Traversa).
1 Introduction.
2 Results and Discussion.
2.1 Direct Methanol Fuel Cells.
2.2 Lithium Ion Polymeric Batteries.
2.3 Electrophysiological Measurements.
3 Conclusions.
References.
Optimized Electromechanical Properties and Applications of Cellular Polypropylene, a New Voided Space-Charge Electret Material (Michael Wegener and Werner Wirges).
1 Introduction.
2 Investigations on Cellular PP.
2.1 Film Preparation.
2.2 Electro-Active Properties.
2.3 Assessment of the Charging Process.
3 Applications.
3.1 Proposed Electromechanical and Electroacoustical Transducer Concepts.
3.2 Control Panels with Pushbuttons Made of Cellular PP Electrets.
3.3 Concept for Vibration Control.
3.4 Concept for Active Noise Control.
4 Conclusions.
References.
Subject Index.
商品描述(中文翻譯)
描述:
兩個令人興奮的科學與技術領域 - 奈米和微米維度。前者是一個蓬勃發展的新研究領域,後者則是電子學的既定尺寸範圍,為了相互的技術利益和未來的商業化,需要找到合適的接合點。功能性奈米結構,如DNA計算機、感測器、神經介面、奈米光學或分子電子學,需要與其「更大」的環境相連。從相反的方向來看,微電子學在過去十年中經歷了前所未有的微型化驅動,持續向微米尺寸範圍推進,朝向亞微米電路。將這兩個世界結合起來是科學家和工程師面臨的一個新的跨學科挑戰 - 這一挑戰得到了歐洲委員會和其他主要項目發起者的認可和大力資助。本書提供了從技術到材料和設備,以及從研究到管理知識的廣泛資訊,這些資訊由編輯從奈米/微米社群的知名關鍵成員收集而來。
目錄:
前言。
貢獻者名單。
I 奈米技術研究資金與商業化前景 美國國家奈米技術倡議:未來五年的規劃(Mihail C. Roco)。
1 介紹。
2 政府研發投資。
參考文獻。
早期奈米技術的技術行銷(Murielle Batude-Thibierge)。
1 介紹。
1.1 管理合成與建議。
1.2 工作定義。
1.3 設定場景。
1.4 行銷的「存在理由」,特別是對於早期階段的奈米技術。
1.5 管理思維和奈米技術的戰略規劃的「存在理由」。
1.6 問題性奈米技術。
2 奈米技術創新的行銷。
2.1 行銷研究預算。
2.2 收集行銷工具的資訊。
2.3 技術分析。
2.4 商業分析。
2.5 定義價格。
2.6 定量診斷和模擬。
3 小型奈米技術企業的管理思維和戰略規劃。
3.1 戰略規劃:從細分行動計劃到商業行動計劃。
3.2 與大型企業共同開發。
3.3 精通翻譯過程。
3.4 制定策略。
3.5 實施策略。
4 結論。
5 附錄。
參考文獻。
亞太地區奈米技術:研究、發展與商業化(Lerwen Liu)。
1 亞太地區的奈米技術資金。
2 商業化努力。
3 奈米技術的私人投資。
4 與亞洲人合作的優勢。
5 附錄。
與中小企業的合作促進商業化(Torsten Schmidt)。
1 公司。
2 範圍。
3 命題:在當前技術市場中,新產品創意的商業成功源於合作。
4 命題:如果在中小企業中實施,創新將快速進入市場。
5 命題:中小企業和發明者的能力是互補而非競爭的。
6 總結。
參考文獻。
日本奈米技術的快速商業化:從實驗室到商業(Hiromichi Maeno)。
1 背景:日本的十字路口。
2 動機和策略:激發獨特的人才。
3 新想法的研究與開發。
4 启动资金和領導力。
5 奈米技術活動。
5.1 生物奈米技術研究所(BNRI):沸石膜。
5.2 碳奈米技術研究所(CNRI):潔淨的單壁碳納米管。
5.3 裝置奈米技術研究所(DNRI)。
5.4 生態奈米技術研究所(ENRI):金屬富勒烯。
5.5 INRI, Inc.(知識產權):方法與策略。
6 結論。
奈米材料與智能醫療設備(Ottilia Saxl)。
1 介紹。
2 為什麼我們現在看到進展?
3 結論。
II 基礎與技術:橋接維度與微結構縮放效應(Uwe Erb, Cedric Cheung, Mohammadreza Baghbanan, 和 Gino Palumbo)。
1 介紹。
2 奈米晶體材料。
3 奈米/微系統技術。
4 奈米材料與奈米/微系統技術之間的現有差距。
5 橋接維度與微結構縮放效應。
6 結論。
參考文獻。
橋接奈米米與米之間的差距(Matthias Meyer, Jürgen Koglin, 和 Thomas Fries)。
1 介紹。
2 動機。
3 橋接差距。
4 測量示例。
4.1 結構化矽晶圓。
4.2 碰撞測量。
4.3 LED外殼。
4.4 薄膜厚度測量。
4.5 使用AFAM的彈性特性。
參考文獻。
電氣化界面的奈米尺度視角:掃描探針顯微鏡研究(Peter Müller, Laura Rossi, 和 Santos F. Alvarado)。
1 介紹。
2 STM z–V光譜學。
3 實驗細節。
3.1 Alq3薄膜在Au(111)上。
3.2 CuPc薄膜在Au(111)上。
4 總結性評論。
參考文獻。
應用特定的實驗室芯片新技術(Heike Schäfer, Steffen Chemnitz, Konstantin Seibel, Volodymyr Koziy, Alexander Fischer, Dietmar Ehrhardt, 和 Markus Böhm)。
1 介紹。
2 製造技術。
3 實驗結果。
3.1 非晶矽PIN二極體。
3.2 非晶矽薄膜晶體管。
3.3 微流體裝置。
4 結論。
參考文獻。
奈米科學對異質催化的影響(Sharifah Bee Abd Hamid 和 Robert Schlögl)。
1 介紹。
2 催化中的奈米技術。
3 電子結構與催化。
4 幾何結構與催化。
5 催化中的大型奈米物體。
6 半導體方法。
7 Combicat方法。
8 結論。
參考文獻。
鈦上的仿生奈米結構(Ralf-Peter Franke)。
1 介紹。
2 生物相容性。
參考文獻。
用於光電應用的氧化物奈米粉末的微波驅動水熱合成(Witold Lojkowski, Agnieszka Opalinska, Tomasz Strachowski, Adam Presz, Stanislaw Gierlotka, Ewa Grzanka, Bogdan Palosz, Wieslaw Strek, Dariusz Hreniak, Larisa Grigorjeva, Donats Millers, Federica Bondioli, Cristina Leonelli, 和 Edward Reszke)。
1 介紹。
2 實驗方法。