Organic Electronics: Materials, Manufacturing, and Applications
暫譯: 有機電子學:材料、製造與應用
Hagen Klauk
- 出版商: Wiley
- 出版日期: 2006-07-21
- 售價: $7,810
- 貴賓價: 9.5 折 $7,420
- 語言: 英文
- 頁數: 446
- 裝訂: Hardcover
- ISBN: 3527312641
- ISBN-13: 9783527312641
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,190$1,166
商品描述
Description
Edited and written by the leading researchers and engineers from such companies as Philips, 3M, Xerox, Infineon, PlasticLogic, Eastman Kodak, Dupont, AIXTRON, and Hueck Folien, this book presents unrivalled and undiluted expertise from those who know best how to assess the risks, opportunities and where this technology is really heading.As such, this practical approach complements the more scientific and fundamentals-oriented literature on the market by providing readers with a first-hand insight into industrial activities to commercialize organic electronics. Following an introduction to the topic, including the history, motivation, benefits and potentials, it reviews recent advances and covers all three important facets of organic electronics: the chemical compounds and materials, manufacturing techniques, and the resulting devices together with their current applications.
Table of Contents
Preface.Author List.
I Introduction.
1 Organic Transistors (Gilles Horowitz).
1.1 Introduction.
1.2 Overview of the Organic Thin-film Transistor.
1.2.1 Are Organic "Semiconductors" Real Semiconductors?
1.2.2 Thin-film Transistor Architecture.
1.2.3 Operating Mode.
1.2.4 Thickness of the Channel.
1.3 Contact Resistance.
1.3.1 Contact Resistance Extraction.
1.3.2 Origin of Contact Resistance.
1.4 Charge Transport.
1.5 Fabrication Techniques.
1.6 The Materials.
1.6.1 Polymers.
1.6.2 Small Molecules.
1.6.3 n-Type Semiconductors.
1.6.4 Single Crystals.
1.6.5 Insulators.
1.7 Concluding Remarks.
Acknowledgements.
References.
II Advanced Materials for Organic Electronics.
2 High-performance Pentacene Transistors (Tommie Kelley).
2.1 Introduction.
2.2 Routes to Performance Improvement.
2.2.1 Purification.
2.2.2 Device Evolution.
2.2.3 Structural Perfection.
2.2.4 Device Architecture.
2.2.5 Interfacial Control.
2.3 Structure–Property Relationships.
2.4 Continuing Reports of High Mobilities.
2.5 Performance in Practice.
2.6 The Future of High-performance Organic Transistors.
References.
3 Engineered Pentacenes (John E. Anthony).
3.1 Introduction.
3.2 Reversible Functionalization.
3.3 2,3,9,10-Tetrasubstituted and 2,3-Disubstituted Pentacenes: End-substituted Derivatives.
3.4 Peri-functionalized Pentacene.
3.5 Pentacene Functionalized at Both peri and End Positions.
3.6 Heteropentacenes.
3.7 Conclusion.
References.
4 Organic Semiconductors Based on Polythiophene and Indolo[3,2-b]carbazole (Beng S. Ong, Yiliang Wu, and Yuning Li).
4.1 Introduction.
4.2 Issues and Challenges.
4.3 Structural Considerations.
4.4 Polythiophene Semiconductors.
4.4.1 High-performance Polythiophene Design.
4.4.2 Polydialkylterthiophenes.
4.4.3 Polydialkylquaterthiophenes.
4.4.4 Polythiophene Nanoparticles.
4.4.5 Inkjet Patterned TFT Arrays.
4.5 Indocarbazole Designs.
4.6 Summary and Prospects.
Acknowledgements.
References.
5 Electrical and Environmental Stability of Polymer Thin-film Transistors (Alberto Salleo and Michael L. Chabinyc).
5.1 Introduction.
5.2 Charge Trapping in TFTs.
5.2.1 General Considerations.
5.2.2 Bias Stress in Organic Transistors.
5.3 Bias Stress in Polyfluorene and Polythiophene TFTs.
5.3.1 Reversible Bias Stress.
5.3.2 Long-lived Bias Stress.
5.3.3 Dependence of Bias Stress on Operating Conditions; Lifetime Predictions.
5.3.4 A Microscopic Theory of Bias Stress.
5.4 Chemical Effects on Stability – Defects and Impurities.
5.4.1 Introduction.
5.4.2 Defects in Molecular Structure.
5.4.2.1 Defects from Synthesis.
5.4.2.2 Photo-induced Defects.
5.4.3.1 Thermochemical Analysis.
5.4.3.2 Oxygen.
5.4.3.3 Water.
5.4.3.4 Organic Solvents.
5.4.3.5 Inorganic Impurities.
5.4.3 Impurities.
5.4.4 Studies of TFT Lifetime.
5.5 Conclusion.
Acknowledgments.
References.
6 Gate Dielectrics (Marcus Halik).
6.1 Introduction.
6.2 The Impact of Gate Dielectrics on the Electrical Functionality of Organic TFTs.
6.3 Insulating Materials – An Overview.
6.3.1 Inorganic Gate Dielectrics.
6.3.2 Polymer Gate Dielectrics.
6.3.3 Self-Assembled Monolayer Gate Dielectrics.
6.3.4 Multi-layer and Multi-component Gate Dielectrics.
6.3.5 Multifunctional Dielectrics.
6.4 Application-related Aspects of Dielectrics.
6.4.1 Poly-4-vinylphenol Dielectrics.
6.4.2 The Self-assembled Monolayer Approach.
References.
7 Advanced Flexible Polymeric Substrates (William A. MacDonald).
7.1 Introduction.
7.2 Polyester Substrates.
7.3 Properties of Base Substrates.
7.3.1 Optical Properties.
7.3.2 Birefringence.
7.3.3 Thermal Properties.
7.3.4 Solvent Resistance.
7.3.5 Surface Quality.
7.3.6 Mechanical Properties.
7.3.7 Summary of Key Properties of Base Substrates.
7.4 Multilayer Structures.
7.5 Film in Application.
Acknowledgments.
References.
III Manufacturing for Organic Electronics.
8 Reel-to-reel Vacuum Metallization (Roland Treutlein, Martin Bergsmann, and Carl J. Stonley).
8.1 Reel-to-reel Vacuum Metallization.
8.1.1 The Metallization Process.
8.1.1.1 Evaporation Sources.
8.1.1.2 Pretreatment and Cleaning of the Web Substrate.
8.1.1.3 PVD Process Flow.
8.1.1.4 Typical Process Times, Rates, and Quantities.
8.1.1.5 Transfer Metallization.
8.1.1.6 Pattern-evaporated Layers.
8.1.2 Properties of the Evaporated Layer.
8.1.2.1 Structure.
8.1.2.2 Layer Thickness (Conductivity).
8.1.2.3 Barrier.
8.1.2.4 Light Barrier.
8.1.3 Environmental Benefits of Vacuum Evaporated Layers.
8.1.4 Applications of Metallized Films.
8.1.4.1 Barrier Packaging.
8.1.4.2 Decorative Applications.
8.1.4.3 Functional Layers.
8.1.4.4 Polymer Electronic Substrates.
8.1.5 Market Analysis.
References.
9 Organic Vapor Phase Deposition (Michael Heuken and Nico Meyer).
9.1 Introduction.
9.1.1 The Principle of OVPD.
9.1.2 Close Coupled Showerhead Technology.
9.2 Deposition of Organic Thin Films.
9.2.1 Process Control in OVPD.
9.2.2 Co-deposition and Doping in OVPD.
9.2.3 Controlled Morphology and Layer Interfaces in OVPD.
9.3 Electronic Devices by OVPD.
9.3.1 OLEDs Made by OVPD.
9.3.2 Organic Photovoltaics by OVPD.
9.3.3 Organic Thin-film Transistors by OVPD.
9.4 Full-color OLED Displays.
9.4.1 Micropatterning by use of Shadow Masks.
9.4.2 Mask-less Processes.
9.5 Material Properties of Organic Molecules for Use in OVPD.
9.6 Summary.
Acknowledgment.
References.
10 Thermal Imaging and Micro-contact Printing (Hee Hyun Lee, John Rogers, and Graciela Blanchet).
10.1 Introduction.
10.2 Building Blocks.
10.3 Printing and Patterning Techniques.
10.3.1 Thermal Imaging.
10.3.2 Printed Devices: From TFTs to Large-area Backplanes.
10.4 Printable Materials.
10.4.1 Polyaniline Nanotube Composites: A High-resolution Printable Conductor.
10.5 Micro-contact Printing.
10.5.1 Contact Printing with High-resolution Stamps.
10.5.1.1 High-resolution Stamps.
10.5.2 Micro-contact Printing.
10.5.3 Nanotransfer Printing.
10.6 Large Area Stamps, Molds, and Photomasks for Soft Lithography.
10.6.1 Micro-contact Printing: A Path to Reel-to-reel Electronics.
10.6.2 Inexpensive Approaches to Large-area Printing.
10.6.3 Registration Using the Lock-and-key Mechanism in Soft Imprinting.
10.7 Conclusions.
Acknowledgments.
References.
11 Thin-film Transistor Fabrication by Digital Lithography (William S. Wong, Jürgen H. Daniel, Michael L. Chabinyc, Ana Claudia Arias, Steven E. Ready, and René Lujan).
11.1 Introduction.
11.2 Jet-printed Patterning for Thin-film Transistor Processing.
11.2.1 Introduction.
11.2.2 Jet-printed Phase-change Etch Masks.
11.3 Digital Lithography.
11.3.1 Digital Lithography for TFT Device Fabrication.
11.3.2 Thin-film Transistor Device Structures.
11.3.2.1 Amorphous Silicon TFTs.
11.3.2.2 Polymeric TFTs by Digital Lithography.
11.3.3 Thin-film Transistor Device Characteristics.
11.3.3.1 a-Si:H TFTs.
11.3.3.2 Printed Polymeric TFTs.
11.4 TFTs on Flexible Substrates.
11.4.1 Introduction.
11.4.2 TFT Pixel Design Considerations.
11.4.3 Digital Lithography for Flexible Backplanes.
11.5 Display Applications with Print-patterned Backplanes.
11.6 Conclusions.
Acknowledgments.
References.
12 Manufacturing of Organic Transistor Circuits by Solution-based Printing (Henning Sirringhaus, Christoph W. Sele, Timothy von Werne, and Catherine Ramsdale).
12.1 Introduction to Printed Organic Thin Film Transistors.
12.2 Overview of Printing-based Manufacturing Approaches for OTFTs.
12.2.1 Screen Printing.
12.2.2 Offset Printing.
12.2.3 Gravure Printing.
12.2.4 Flexography.
12.2.5 Inkjet Printing.
12.2.6 Laser-based Dry-printing Techniques.
12.2.7 Other Nonlithographic Manufacturing Approaches.
12.3 High-resolution, Self-aligned Inkjet Printing.
12.3.1 Self-aligned Printing by Selective Surface Treatment.
12.3.2 Self-aligned Printing by Surface Segregation.
12.3.3 Self-aligned Printing by Autophobing.
12.4 Performance and Reliability of Solution-processed OTFTs for Applications in Flexible Displays.
12.5 Conclusions.
Acknowledgments.
References.
IV Devices, Applications, and Products.
13 From Transistors to Large-scale Integrated Circuits (Gerwin H. Gelinck, Erik van Veenendaal, Eduard J. Meijer, Eugenio Cantatore, H. Edzer A. Huitema, Pieter van Lieshout, Fred J. Touwslager, Alwin W. Marsman, and Dago M. de Leeuw).
13.1 Introduction.
13.2 Discrete Devices.
13.2.1 Basic Device Operation of Organic Transistor.
13.2.2 Current–Voltage Characteristics.
13.2.3 Capacitance–Voltage Characteristics.
13.3 Fabrication and Characterization of Integrated Circuits.
13.3.1 Fabrication.
13.3.2 Modeling.
13.3.3 Analysis of Inverters.
13.3.4 Analysis of Integrated Circuits.
Acknowledgments.
References.
14 Roll-up Active-matrix Displays (H. Edzer A. Huitema, Gerwin H. Gelinck, Erik van Veenendaal, Fred J. Touwslager, and Pieter J. G. van Lieshout).
14.1 Introduction.
14.1.1 Non-rigid Display Research and Development Overview.
14.2 Rollable Active-matrix Backplane Technology.
14.3 Roll-up Active-matrix Backplane Design.
14.3.1 Field-effect Mobility Effects.
14.3.2 Leakage Current Effects.
14.4 The Electronic Ink Film.
14.5 Roll-up Display Integration.
14.6 Functional Active-matrix Roll-up Displays.
14.7 Roll-up Display Device Concepts.
14.8 Towards a System-on-plastic: Driver Integration.
14.8.1 Row Driver Integration.
14.8.2 Stand-alone Shift Registers.
14.8.3 Integrated Shift Registers.
Acknowledgment.
References.
15 Active-matrix Light-emitting Displays (Shelby F. Nelson and Lisong Zhou).
15.1 Introduction.
15.2 OLED Pixel Differences from LCDs.
15.3 Complex Pixel Design.
15.4 Practical Design.
15.5 AIM–SPICE Simulation of Pentacene TFT-driven OLEDs.
15.6 Fabrication Process.
15.7 Device Passivation.
15.8 PVA and Parylene.
15.9 Pentacene TFT Uniformity.
15.10 Stability.
15.11 Integration of TFTs and OLEDs.
15.12 Flexible OLED Display.
15.13 Substrate Selection and Mounting.
15.14 Thermal Dimensional Stability.
15.15 Surface Quality.
15.16 Chemical Resistance.
15.17 Fabrication Process.
15.18 Display Results.
15.19 Conclusion.
References.
16 Large-area Detectors and Sensors (Takao Someya and Takayasu Sakurai).
16.1 Introduction.
16.2 Large-area Pressure Sensors.
16.3 Organic Transistor-based Integrated Circuits.
16.4 Bending Experiments of Organic Transistors.
16.5 High-temperature Operation of Organic Transistors.
16.6 Sheet Image Scanners.
16.7 Three-dimensional Integrated Circuits.
16.8 Future Prospects of Large-area Electronics.
16.9 Remaining Issues.
16.10 Conclusions.
Acknowledgments.
References.
17 Organic Semiconductor-based Chemical Sensors (Howard E. Katz and Jia Huang).
17.1 Background.
17.2 Inorganic and Nanostrctured Semiconductor Sensors.
17.3 Sensitive Organic Field-effect Transistors.
17.4 Mechanistic Rationale.
17.5 Conclusion.
References.
Index.
商品描述(中文翻譯)
**描述**
本書由來自飛利浦、3M、施樂、英飛凌、PlasticLogic、伊士曼柯達、杜邦、AIXTRON 和 Hueck Folien 等公司的領先研究人員和工程師編輯和撰寫,提供了無與倫比且純粹的專業知識,這些專家最了解如何評估風險、機會以及這項技術的真正發展方向。
因此,這種實用的方法補充了市場上更具科學性和基礎導向的文獻,為讀者提供了對商業化有機電子工業活動的第一手見解。在介紹主題的過程中,包括歷史、動機、好處和潛力,並回顧了最近的進展,涵蓋了有機電子學的三個重要方面:化學化合物和材料、製造技術以及由此產生的設備及其當前應用。
**目錄**
前言
作者名單
**I 引言**
**1 有機晶體管**(Gilles Horowitz)
1.1 介紹
1.2 有機薄膜晶體管概述
1.2.1 有機「半導體」是真正的半導體嗎?
1.2.2 薄膜晶體管架構
1.2.3 操作模式
1.2.4 通道厚度
1.3 接觸電阻
1.3.1 接觸電阻提取
1.3.2 接觸電阻的來源
1.4 電荷傳輸
1.5 製造技術
1.6 材料
1.6.1 聚合物
1.6.2 小分子
1.6.3 n型半導體
1.6.4 單晶
1.6.5 絕緣體
1.7 總結
致謝
參考文獻
**II 有機電子學的先進材料**
**2 高性能五苯晶體管**(Tommie Kelley)
2.1 介紹
2.2 提升性能的途徑
2.2.1 純化
2.2.2 設備演變
2.2.3 結構完美性
2.2.4 設備架構
2.2.5 界面控制
2.3 結構-性質關係
2.4 高流動性的持續報告
2.5 實際性能
2.6 高性能有機晶體管的未來
參考文獻
**3 工程化五苯**(John E. Anthony)
3.1 介紹
3.2 可逆功能化
3.3 2,3,9,10-四取代和2,3-二取代五苯:端取代衍生物
3.4 Peri-功能化五苯
3.5 在兩端和Peri位置功能化的五苯
3.6 異五苯
3.7 結論
參考文獻
**4 基於聚噻吩和Indolo[3,2-b]carbazole的有機半導體**(Beng S. Ong, Yiliang Wu, 和 Yuning Li)
4.1 介紹
4.2 問題與挑戰
4.3 結構考量
4.4 聚噻吩半導體
4.4.1 高性能聚噻吩設計
4.4.2 聚二烷基三噻吩
4.4.3 聚二烷基四噻吩
4.4.4 聚噻吩納米粒子
4.4.5 噴墨圖案化TFT陣列
4.5 Indocarbazole設計
4.6 總結與展望
致謝
參考文獻
**5 聚合物薄膜晶體管的電氣和環境穩定性**(Alberto Salleo 和 Michael L. Chabinyc)
5.1 介紹
5.2 TFT中的電荷捕獲
5.2.1 一般考量
5.2.2 有機晶體管中的偏壓應力
5.3 聚氟烯和聚噻吩TFT中的偏壓應力
5.3.1 可逆偏壓應力
5.3.2 長壽命偏壓應力
5.3.3 偏壓應力對操作條件的依賴;壽命預測
5.3.4 偏壓應力的微觀理論
5.4 化學對穩定性的影響 - 缺陷和雜質
5.4.1 介紹
5.4.2 分子結構中的缺陷
5.4.2.1 合成中的缺陷
5.4.2.2 光誘導缺陷
5.4.3.1 熱化學分析
5.4.3.2 氧
5.4.3.3 水
5.4.3.4 有機溶劑
5.4.3.5 無機雜質
5.4.3 雜質
5.4.4 TFT壽命的研究
5.5 結論
致謝
參考文獻
**6 閘介電材料**(Marcus Halik)
6.1 介紹
6.2 閘介電材料對有機TFT電氣功能的影響
6.3 絕緣材料 - 概述
6.3.1 無機閘介電材料
6.3.2 聚合物閘介電材料
6.3.3 自組裝單層閘介電材料
6.3.4 多層和多組分閘介電材料
6.3.5 多功能介電材料
6.4 與介電材料相關的應用方面
6.4.1 聚-4-乙烯苯酚介電材料
6.4.2 自組裝單層方法
參考文獻
**7 先進的柔性聚合物基板**(William A. MacDonald)
7.1 介紹
7.2 聚酯基板
7.3 基板的性質
7.3.1 光學性質
7.3.2 雙折射
7.3.3 熱性質
7.3.4 溶劑抗性
7.3.5 表面質量
7.3.6 機械性質
7.3.7 基板的關鍵性質總結
7.4 多層結構
7.5 應用中的薄膜
致謝
參考文獻
**III 有機電子學的製造**
**8 卷對卷真空金屬化**(Roland Treutlein, Martin Bergsmann, 和 Carl J. Stonley)
8.1 卷對卷真空金屬化
8.1.1 金屬化過程
8.1.1.1 蒸發源
8.1.1.2 網基板的預處理和清潔
8.1.1.3 PVD過程流程
8.1.1.4 典型的過程時間、速率和數量
8.1.1.5 轉移金屬化
8.1.1.6 圖案蒸發層
8.1.2 蒸發層的性質
8.1.2.1 結構
8.1.2.2 層厚度(導電性)
8.1.2.3 隔離層
8.1.2.4 光屏障
8.1.3 真空蒸發層的環境效益
8.1.4 金屬化薄膜的應用
8.1.4.1 隔離包裝
8.1.4.2 裝飾應用
8.1.4.3 功能層
8.1.4.4 聚合物電子基板
8.1.5 市場分析
參考文獻
**9 有機蒸氣相沉積**(Michael Heuken 和 Nico Meyer)
9.1 介紹
9.1.1 OVPD的原理
9.1.2 緊密耦合噴嘴技術
9.2 有機薄膜的沉積
9.2.1 OVPD中的過程控制
9.2.2 OVPD中的共沉積和摻雜
9.2.3 OVPD中的控制形態和層界面
9.3 通過OVPD製作的電子設備
9.3.1 由OVPD製作的OLED
9.3.2 由OVPD製作的有機光伏
9.3.3 由OVPD製作的有機薄膜晶體管
9.4 全彩OLED顯示器
9.4.1 使用陰影掩模的微圖案化
9.4.2 無掩模過程
9.5 用於OVPD的有機分子的材料性質
9.6 總結
致謝
參考文獻
**10 熱成像和微接觸印刷**(Hee Hyun Lee, John Rogers, 和 Graciela Blanchet)
10.1 介紹
10.2 基本組件
10.3 印刷和圖案化技術
10.3.1 熱成像
10.3.2 印刷設備:從TFT到大面積背板
10.4 可印刷材料
10.4.1 聚苯胺納米管複合材料:高解析度可印刷導體
10.5 微接觸印刷
10.5.1 使用高解析度印章的接觸印刷
10.5.1.1 高解析度印章
10.5.2 微接觸印刷
10.5.3 奈米轉印印刷
10.6 大面積印章、模具和光掩模用於軟光刻
10.6.1 微接觸印刷:通往卷對卷電子學的途徑
10.6.2 大面積印刷的低成本方法
10.6.3 使用鎖和鑰匙機制進行軟印刷的註冊
10.7 結論
致謝
參考文獻
**11 通過數位光刻製作薄膜晶體管**(William S. Wong, Jürgen H. Daniel, Michael L. Chabinyc, Ana Claudia Arias, Steven E. Ready, 和 René Lujan)
11.1 介紹
11.2 用於薄膜晶體管處理的噴墨印刷圖案化
11.2.1 介紹
11.2.2 噴墨印刷相變蝕刻掩模
11.3 數位光刻
11.3.1 用於TFT設備製造的數位光刻
11.3.2 薄膜晶體管設備結構
11.3.2.1 非晶矽TFT
11.3.2.2 通過數位光刻製作的聚合物TFT
11.3.3 薄膜晶體管設備特性
11.3.3.1 a-Si:H TFT
11.3.3.2 印刷聚合物TFT
11.4 在柔性基板上的TFT
11.4.1 介紹
11.4.2 TFT像素設計考量
11.4.3 用於柔性背板的數位光刻
11.5 使用印刷圖案化背板的顯示應用
11.6 結論
致謝
參考文獻
**12 通過基於溶液的印刷製作有機晶體管電路**(Henning Sirringhaus, Christoph W. Sele, Timothy von Werne, 和 Catherine Ramsdale)
12.1 印刷有機薄膜晶體管的介紹
12.2 有機薄膜晶體管的印刷製造方法概述
12.2.1 網印刷
12.2.2 膜印刷
12.2.3 凹版印刷
12.2.4