Organic Electronics : Emerging Concepts and Technologies (Hardcover)
Fabio Cicoira , Clara Santato
- 出版商: Wiley
- 出版日期: 2013-10-21
- 售價: $1,800
- 貴賓價: 9.8 折 $1,764
- 語言: 英文
- 頁數: 464
- 裝訂: Hardcover
- ISBN: 3527411313
- ISBN-13: 9783527411313
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$690$538 -
$780$663 -
$450$441 -
$780$702 -
$520$442 -
$780$663 -
$400$380 -
$230$219 -
$680$578 -
$720$648 -
$100$95 -
$360$252 -
$450$356 -
$520$442 -
$500$395 -
$380$300 -
$580$458 -
$580$452 -
$420$332 -
$720$562 -
$520$406 -
$350$343 -
$2,080$1,976 -
$300$234 -
$6,930$6,584
相關主題
商品描述
<內容簡介>
An overview of the tremendous potential of organic electronics, concentrating on those emerging topics and technologies that will form the focus of research over the next five to ten years. The young and energetic team of editors with an excellent research track record has brought together internationally renowned authors to review up-and-coming topics, some for the first time, such as organic spintronics, iontronics, light emitting transistors, organic sensors and advanced structural analysis. As a result, this book serves the needs of experienced researchers in organic electronics, graduate students and post-doctoral researchers, as well as scientists active in closely related fields, including organic chemical synthesis, thin film growth and biomaterials.
<章節目錄>
Preface XIII
List of Contributors XV
1 Nanoparticles Based on p-Conjugated Polymers and Oligomers for Optoelectronic, Imaging, and Sensing Applications: The Illustrative Example of Fluorene-Based Polymers and Oligomers 1
Iren Fischer and Albertus P.H.J. Schenning
1.1 Introduction 1
1.2 Nanoparticles Based on Fluorene Polymers 3
1.2.1 Optoelectronic Applications 3
1.2.1.1 Characterization of Nanoparticles 3
1.2.1.2 Nanoparticle Film Fabrication and Characterization 4
1.2.1.3 OLEDs 5
1.2.1.4 Solar Cell Applications 8
1.2.2 Imaging and Sensing Applications 10
1.2.2.1 Characterization of Nanoparticles 10
1.2.2.2 Biosensing 11
1.2.2.3 Bioimaging 14
1.3 Nanoparticles Based on Fluorene Oligomer 16
1.3.1 Characterization 16
1.3.2 Nanoparticles for Sensing and Imaging 17
1.4 Conclusions and Perspectives 18
References 19
2 Conducting Polymers to Control and Monitor Cells 27
Leslie H. Jimison, Jonathan Rivnay, and Roisin M. Owens
2.1 Introduction 27
2.2 Conducting Polymers for Biological Applications 28
2.2.1 Unique Benefits of Conducting Polymers 29
2.2.2 Biocompatibility of Conducting Polymers 30
2.2.3 Electrochemical Properties and Tools 31
2.3 Conducting Polymers to Control Cells 32
2.3.1 Establishing Conducting Polymers as Cell Culture Environments 32
2.3.2 Optimizing Conducting Polymers for Cell Culture 32
2.3.3 Controlling Cell Adhesion via Redox State 33
2.3.3.1 Redox Switches 34
2.3.3.2 Redox Gradients 35
2.3.3.3 Protein Characterization as a Function of Redox State 36
2.3.4 Direct Patterning of Proteins to Control Cell Adhesion 38
2.3.5 Controlling Cell Growth and Development 39
2.3.5.1 Electrical Stimulation to Promote Neurite Formation and Extension 39
2.3.5.2 Electrical Stimulation to Promote Muscle Cell Proliferation and Differentiation 39
2.3.5.3 Alignment Control via Topographical Cues 40
2.3.5.4 Incorporation of Biomolecules to Control Differentiation 43
2.3.6 Organic Electronic Ion Pumps 46
2.3.7 On-Demand Cell Release 48
2.3.8 Conducting Polymer Actuators 48
2.3.9 Optoelectronic Control of Cell Behavior 49
2.4 Conducting Polymers to Monitor Cells 50
2.4.1 Conducting Polymers to Monitor Neuronal Function 51
2.4.1.1 Conducting Polymer Electrodes 51
2.4.1.2 Transistors 57
2.4.2 Conducting Polymers to Monitor Behavior of Nonelectrically Active Cells 57
2.5 Conclusions 59
References 59
3 Medical Applications of Organic Bioelectronics 69
Salvador Gomez-Carretero and Peter Kj€all
3.1 Introduction 69
3.2 Regenerative Medicine and Biomedical Devices 71
3.2.1 Scaffolds, Signaling Interfaces, and Surfaces for Novel Biomedical Applications 71
3.2.1.1 Scaffolds and Surface Modulation 71
3.2.1.2 Biomolecule Presenting Surfaces 72
3.2.1.3 Degradable Surfaces for Biomedical Applications 73
3.2.1.4 Controlled Substance Release 73
3.2.2 Prosthetics and Medical Devices 75
3.2.2.1 Organic Bioelectronics as Actuators 76
3.2.2.2 Neuroprosthetics 77
3.3 Organic Electronics in Biomolecular Sensing and Diagnostic Applications 80
3.3.1 Organic Electronics as Biomolecule Sensors: A Technological Overview 80
3.3.2 Small-Molecule and Biological Metabolite Sensing 81
3.3.3 Immunosensors 82
3.3.4 DNA Sensing 83
3.3.5 Medical Diagnosis and the Electronic Nose 83
3.4 Concluding Remarks 85
References 85
4 A Hybrid Ionic–Electronic Conductor: Melanin, the First Organic Amorphous Semiconductor? 91
Paul Meredith, Kristen Tandy, and Albertus B. Mostert
4.1 Introduction and Background 91
4.2 Physical and Optical Properties of Melanin and the Transport Physics of Disordered Semiconductors 94
4.3 The Hydration Dependence of Melanin Conductivity 97
4.4 Muon Spin Relaxation Spectroscopy and Electron Paramagnetic Resonance 101
4.5 Transport Model for Electrical Conduction and Photoconduction in Melanin 104
4.6 Bioelectronics, Hybrid Devices, and Future Perspectives 107
References 110
5 Eumelanin: An Old Natural Pigment and a New Material for Organic Electronics – Chemical, Physical, and Structural Properties in Relation to Potential Applications 113
Alessandro Pezzella and Julia Wunsche
5.1 Introduction: The “Nature-Inspired” 113
5.2 Natural Melanins 114
5.2.1 Overview 114
5.2.2 Distribution and Isolation of Natural Eumelanin 115
5.2.3 Melanogenesis: From Understanding the In Vivo Path to In Vitro Pigment Preparation 116
5.3 Synthetic Melanins 118
5.3.1 Overview 118
5.3.2 Oxidative Polymerization of 5,6-Dihydroxyindole(s) 118
5.4 Chemical–Physical Properties and Structure–Property Correlation 122
5.4.1 Stability against Acids and Bases 122
5.4.2 Molecular Weight 123
5.4.3 Hydration, Aggregation, and Supramolecular Organization 124
5.4.4 Light Absorption and Scattering 125
5.4.5 Metal Chelation 126
5.4.6 Redox State 127
5.4.7 Autoxidation 128
5.4.8 Bleaching 129
5.4.9 NMR Spectroscopy 130
5.4.10 EPR Spectroscopy 130
5.5 Thin Film Fabrication 131
5.6 Melanin Hybrid Materials 132
5.7 Conclusions 133
References 133
6 New Materials for Transparent Electrodes 139
Thomas W. Phillips and John C. de Mello
6.1 Introduction 139
6.1.1 Indium Tin Oxide 139
6.1.2 Optoelectronic Characteristics 140
6.1.2.1 The Influence of Sheet Resistance 143
6.1.2.2 Optical Transparency 146
6.1.2.3 Transmittance Versus Sheet Resistance Trade-off Characteristics 146
6.1.2.4 Work Function 147
6.2 Emergent Electrode Materials 149
6.2.1 Graphene 149
6.2.1.1 Fabrication 151
6.2.1.2 Outlook 152
6.2.2 Carbon Nanotubes 153
6.2.2.1 Structure 153
6.2.2.2 Networks 155
6.2.2.3 Film Fabrication 156
6.2.2.4 Improving Performance 158
6.2.3 Metal Nanowires 161
6.2.3.1 Silver Nanowires 161
6.2.3.2 Alternative Metal Nanowires 164
6.3 Conclusions 166
References 167
7 Ionic Carriers in Polymer Light-Emitting and Photovoltaic Devices 175
Sam Toshner and Janelle Leger
7.1 Polymer Light-Emitting Electrochemical Cells 175
7.2 Ionic Carriers 178
7.3 Fixed Ionic Carriers 181
7.4 Fixed Junction LEC-Based Photovoltaic Devices 183
7.5 Conclusions 184
References 185
8 Recent Trends in Light-Emitting Organic Field-Effect Transistors 187
Jana Zaumseil
8.1 Introduction 187
8.2 Working Principle 188
8.2.1 Unipolar LEFETs 188
8.2.2 Ambipolar LEFETs 190
8.3 Recent Trends and Developments 197
8.3.1 Heterojunction Light-Emitting FETs 197
8.3.2 Single-Crystal Light-Emitting FETs 200
8.3.3 Carbon Nanotube Light-Emitting FETs 204
8.4 Conclusions 206
References 206
9 Toward Electrolyte-Gated Organic Light-Emitting Transistors: Advances and Challenges 215
Jonathan Sayago, Sareh Bayatpour, Fabio Cicoira, and Clara Santato
9.1 Introduction 215
9.2 Electrolyte-Gated Organic Transistors 216
9.3 Electrolytes Employed in Electrolyte-Gated Organic Transistors 218
9.4 Preliminary Results and Challenges in Electrolyte-Gated Organic Light-Emitting Transistors 220
9.5 Relevant Questions and Perspectives in the Field of EG-OLETs 226
References 227
10 Photophysical and Photoconductive Properties of Novel Organic Semiconductors 233
Oksana Ostroverkhova
10.1 Introduction 233
10.2 Overview of Materials 234
10.2.1 Benzothiophene, Anthradithiophene, and Longer Heteroacene Derivatives 234
10.2.2 Pentacene and Hexacene Derivatives 236
10.2.3 Indenofluorene Derivatives 238
10.3 Optical and Photoluminescent Properties of Molecules in Solutions and in Host Matrices 238
10.4 Aggregation and Its Effect on Optoelectronic Properties 241
10.4.1 J-Versus H-Aggregate Formation 241
10.4.2 Example of Aggregation: Disordered H-Aggregates in ADT-TES-F Films 241
10.4.2.1 Aggregate Formation: Optical and Photoluminescent Properties 242
10.4.2.2 Aggregate Formation: Photoconductive Properties 243
10.4.2.3 ADT-TES-F Aggregates: Identification and Properties 244
10.4.3 Effects of Molecular Packing on Spectra 246
10.4.3.1 Molecular Structure and Solid-State Packing 246
10.4.3.2 Film Morphology and Spectra 247
10.5 (Photo)Conductive Properties of Pristine Materials 248
10.5.1 Ultrafast Photophysics and Charge Transport on Picosecond Timescales 248
10.5.2 Charge Transport on Nanosecond and Longer Timescales 250
10.5.3 Dark Current and cw Photocurrent 251
10.6 Donor–Acceptor Composites 252
10.6.1 Donor–Acceptor Interactions: FRET versus Exciplex Formation 254
10.6.2 Donor–Acceptor Interactions Depending on the Donor–Acceptor LUMO Energies Offset, Donor and Acceptor Separation, and Film Morphology 256
10.6.2.1 Effects on the Photoluminescence 256
10.6.2.2 Effects on the Photocurrent 257
10.7 Summary and Outlook 260
References 261
11 Engineering Active Materials for Polymer-Based Organic Photovoltaics 273
Andrew Ferguson, Wade Braunecker, Dana Olson, and Nikos Kopidakis
11.1 Introduction 273
11.2 Device Architectures and Operating Principles 276
11.2.1 Device Architectures 276
11.2.1.1 Active Layer 276
11.2.1.2 Contacts 277
11.2.2 Energetics of Charge Generation in OPV Devices 278
11.3 Bandgap Engineering: Low-Bandgap Polymers 283
11.4 Molecular Acceptor Materials for OPV 285
11.4.1 Morphology 286
11.4.2 Electron Affinity 288
11.4.3 Stabilization of Reduced Acceptor 290
11.4.4 Complementary Light Absorption 292
11.5 Summary 295
References 295
12 Single-Crystal Organic Field-Effect Transistors 301
Taishi Takenobu and Yoshihiro Iwasa
12.1 Introduction 301
12.2 Single-Crystal Growth 302
12.3 MISFET 303
12.4 Schottky Diode and MESFET 304
12.5 Ambipolar Transistor 307
12.6 Light-Emitting Ambipolar Transistor 309
12.7 Electric Double-Layer Transistor 312
12.8 Conclusion 315
References 316
13 Large-Area Organic Electronics: Inkjet Printing and Spray Coating Techniques 319
Oana D. Jurchescu
13.1 Introduction 319
13.2 Organic Electronic Devices – Operation Principles 320
13.3 Materials for Organic Large-Area Electronics 322
13.4 Manufacturing Processes for Large-Area Electronics 324
13.4.1 Organic Devices Fabricated by Printing Methods 325
13.4.1.1 Soft Lithography 325
13.4.1.2 Inkjet Printing 328
13.4.2 Spray Deposition for Organic Large-Area Electronics 330
13.4.2.1 Motivation and Technical Aspects for Spray Deposition 330
13.4.2.2 Top Electrodes Deposited by Spray Coating 332
13.4.2.3 Spray-Deposited Organic Thin-Film Transistors 333
13.4.2.4 Large-Area, Low-Cost Spray-Deposited Organic Solar Cells 334
13.5 Conclusions 335
References 335
14 Electronic Traps in Organic Semiconductors 341
Alberto Salleo
14.1 Introduction 341
14.2 What are Traps in Organic Semiconductors and Where Do They Come From? 343
14.3 Effect of Traps on Electronic Devices 345
14.3.1 Transistors 345
14.3.2 Light-Emitting Diodes 347
14.3.3 Photovoltaics 348
14.3.4 Sensors 348
14.4 Detecting Traps in Organic Semiconductors 349
14.4.1 Optical Methods 349
14.4.2 Scanning Probe Methods 351
14.4.3 Electrical Methods 352
14.4.4 Use of Electronic Devices 353
14.5 Experimental Data on Traps in Organic Semiconductors 358
14.5.1 Traps in Organic Single Crystals 358
14.5.2 Traps in Polycrystalline Thin Films 364
14.5.3 Traps in Conjugated Polymer Thin Films 368
14.6 Conclusions and Outlook 372
References 373
15 Perspectives on Organic Spintronics 381
Alberto Riminucci, Mirko Prezioso, and Patrizio Graziosi
15.1 Introduction 381
15.2 Magnetoresistive Phenomena in Organic Semiconductors 382
15.2.1 Interface Phenomena – The Role of Tunnel Barriers 384
15.2.2 Bulk Phenomena and Spin Transport 387
15.2.3 Interplay between Conductivity Switching and Spin Transport 388
15.3 Applications of Organic Spintronics 390
15.3.1 Sensor Applications 390
15.3.2 Memristive Phenomena in a Prototypical Spintronic Device 391
15.4 Future Developments 396
References 397
16 Organic-Based Thin-Film Devices Produced Using the Neutral Cluster Beam Deposition Method 401
Hoon-Seok Seo, Jeong-Do Oh, and Jong-Ho Choi
16.1 Introduction 401
16.2 Neutral Cluster Beam Deposition Method 403
16.3 Organic Thin Films and Organic Field-Effect Transistors 405
16.3.1 Morphological and Structural Properties of Organic Thin Films 406
16.3.2 Characterization of OFETs 408
16.3.3 Transport Phenomena 412
16.4 Organic Light-Emitting Field-Effect Transistors 414
16.4.1 Characterization of the Component OFETs of Ambipolar OLEFETs 416
16.4.2 Electroluminescence and Conduction Mechanism 419
16.5 Organic CMOS Inverters 422
16.5.1 Characterization of the Component OFETs of Organic CMOS Inverters 422
16.5.2 Realization of Air-Stable, Hysteresis-Free Organic CMOS Inverters 425
16.6 Summary 427
References 428
Index 433
商品描述(中文翻譯)
內容簡介
本書概述了有機電子學的巨大潛力,重點關注未來五到十年內將成為研究焦點的新興主題和技術。這支年輕而充滿活力的編輯團隊擁有卓越的研究背景,匯聚了國際知名的作者,首次回顧了一些新興主題,例如有機自旋電子學、離子電子學、發光晶體管、有機感測器和先進結構分析。因此,本書滿足了有機電子學領域經驗豐富的研究人員、研究生和博士後研究人員的需求,以及活躍於相關領域的科學家,包括有機化學合成、薄膜生長和生物材料。
章節目錄
前言 XIII
貢獻者名單 XV
1 基於p-共軛聚合物和寡聚物的納米粒子在光電、成像和感測應用中的應用:以基於氟烯的聚合物和寡聚物為例 1
Iren Fischer 和 Albertus P.H.J. Schenning
1.1 介紹 1
1.2 基於氟烯聚合物的納米粒子 3
1.2.1 光電應用 3
1.2.1.1 納米粒子的特徵 3
1.2.1.2 納米粒子薄膜的製備和特徵 4
1.2.1.3 OLEDs 5
1.2.1.4 太陽能電池應用 8
1.2.2 成像和感測應用 10
1.2.2.1 納米粒子的特徵 10
1.2.2.2 生物感測 11
1.2.2.3 生物成像 14
1.3 基於氟烯寡聚物的納米粒子 16
1.3.1 特徵 16
1.3.2 用於感測和成像的納米粒子 17
1.4 結論與展望 18
參考文獻 19
2 用於控制和監測細胞的導電聚合物 27
Leslie H. Jimison、Jonathan Rivnay 和 Roisin M. Owens
2.1 介紹 27
2.2 用於生物應用的導電聚合物 28
2.2.1 導電聚合物的獨特優勢 29
2.2.2 導電聚合物的生物相容性 30
2.2.3 電化學特性和工具 31
2.3 用於控制細胞的導電聚合物 32
2.3.1 將導電聚合物建立為細胞培養環境 32
2.3.2 優化導電聚合物以進行細胞培養 32
2.3.3 通過氧化還原狀態控制細胞黏附 33
2.3.3.1 氧化還原開關 34
2.3.3.2 氧化還原梯度 35
2.3.3.3 蛋白質特徵作為氧化還原狀態的函數 36
2.3.4 直接圖案化