相關主題
商品描述
Description:
Expectations of a technological revolution are associated with nanotechnology, and indeed the generation, modification and utilization of objects with tiniest dimensions already permeates science and research in a way that the absence of nanotechnology is no longer conceivable. It has progressed to an independent interdisciplinary field, its great success due to the purposeful combination of physical, mechanical and molecular techniques. This book starts out with the most important fundamentals of microtechnology and chemistry on which the understanding of shaping nanoscale structures are based, then a variety of examples illustrate the fabrication of nanostructures from different materials. Subsequently, methods for characterization of the generated structures are presented to the reader. Through this fascinating introduction, both scientists and engineers gain insights into the “other side” of nanotechnology
Table of Contents:
1. Introduction.
1.1 The Way into the Nanoworld.
1.1.1 From Micro- to Nanotechniques.
1.1.2 Definition of Nanostructures.
1.1.3 Insight into the Nanoworld.
1.2 Building Blocks of Nanotechnology.
1.3 Interactions and Topology.
1.4 The Microscopic Environment of the Nanoworld.
2. Molecular Basics.
2.1 Particles and Bonds.
2.1.1 Chemical Bonds in Nanotechnology.
2.1.2 Van der Waals Interactions.
2.1.3 Dipole-Dipole Interactions.
2.1.4 Ionic Interactions.
2.1.5 Metal Bonds.
2.1.6 Covalent Bonds.
2.1.7 Coordinative Bonds.
2.1.8 Hydrogen Bridge Bonds.
2.1.9 Polyvalent Bonds.
2.2 Chemical Structure.
2.2.1 Bonding Topologies.
2.2.2 Building Blocks of Covalent Architecture.
2.2.3 Units for a Coordinated Architecture.
2.2.4 Building Blocks for Weakly Bound Aggregates.
2.2.5 Assembly of Complex Structures through the Internal Hierarchy of Binding Strengths.
2.2.6 Reaction Probability and Reaction Equilibrium.
3. Microtechnological Foundations.
3.1 Planar Technology.
3.2 Preparation of Thin Layers.
3.2.1 Condition and Preprocessing of the Substrate Surface.
3.2.2 Layer Deposition from the Gas Phase.
3.2.3 Evaporation.
3.2.4 Sputtering.
3.2.5 Chemical Vapor Deposition.
3.2.6 Galvanic Deposition.
3.2.7 Deposition by Spinning (Spin Coating).
3.2.8 Shadow-mask Deposition Techniques.
3.3 Preparation of Ultrathin Inorganic Layers and Surface-bound Nanoparticles.
3.3.1 Ultrathin Layers by Vacuum Deposition Processes.
3.3.2 Deposition of Ultrathin Films from the Liquid Phase.
3.3.3 In Situ Generation of Ultrathin Inorganic Films by Chemical Surface Modification.
3.3.4 In Situ Formation of Ultrathin Inorganic Layers on Heteroorganic Materials.
3.3.5 Immobilization of Nanoparticles.
3.3.6 In Situ Formation of Inorganic Nanoparticles.
3.4 Structure Generation and Fabrication of Lithographic Masks.
3.4.1 Adhesive Mask Techniques.
3.4.2 Role of Resist in Photolithography.
3.4.3 Serial Pattern Transfer.
3.4.5 Maskless Structure Generation.
3.4.6 Soft Lithography.
3.5 Etching Processes.
3.5.1 Etching Rate and Selectivity.
3.5.2 Isotropic and Anisotropic Etching Processes.
3.5.3 Lithographic Resolution in Etching Processes.
3.5.4 Dry Etching Processes.
3.5.6 High-resolution Dry Etching Techniques.
3.5.7 Choice of Mask for Nanolithographic Etching Processes.
3.6 Packaging.
3.7 Biogenic and Bioanalogue Molecules in Technical Microstructure.
4. Preparation of Nanostructures.
4.1 Principles of Fabrication.
4.1.1 Subtractive and Additive Creation of Nanostructures.
4.1.2 Nanostructure Generation by Lift-off Processes.
4.1.3 Principles of Nanotechnical Shape-definition and Construction.
4.2 Nanomechanical Structure Generation.
4.2.1 Scaling Down of Mechanical Processing Techniques.
4.2.2 Local Mechanical Cutting Processes.
4.2.3 Surface Transport Methods.
4.2.4 Reshaping Processes.
4.2.5 Printing Processes.
4.3 Nanolithography.
4.3.1 Structure Transfer by Electromagnetic Radiation.
4.3.2 Nanolithographic Transfer of Groups of Elements by Optical Projection.
4.3.3 EUV and X-ray Lithography.
4.3.4 Multilayer Resists Techniques with Optical Pattern Transfer.
4.3.5 Near-field Optical Structure Techniques with Contact masks.
4.3.6 Energetic Particles in Nanolithographic Structure Transfer.
4.3.7 Electron Beam Lithography.
4.3.8 Ion Beam Lithography.
4.3.9 Atomic Beam Lithography.
4.3.10 Molecular and Nanoparticle Beam Lithography.
4.3.11 Direct Writing of Structures by a Particle Beam.
4.3.12 Single-particle Beam Processes.
4.3.13 Nanofabrication by Self-structuring Masks.
4.4 Nanofabrication by Scanning Probe Techniques.
4.4.1 Scanning Force Probes.
4.4.2 Particle Manipulation With a Scanning Tunneling Microscope (STM).
4.4.3 Thermo-mechanical Writing of Nanostructures.
4.4.4 Electrically Induced Structure Generation by Scanning Probe Techniques.
4.4.5 Chemical Electrodeless Induced Scanning Probe Structure Generation.
4.4.6 Nanostructure Generation by Optical Near-field Probes.
5. Nanotechnical Structures.
5.1 Inorganic Solids.
5.1.1 Influence of Material Morphology on Nanoscale Pattern Processes.
5.1.2 Inorganic Dielectrics.
5.1.3 Metals.
5.1.4 Semiconductors.
5.1.5 Carbon.
5.2 Organic Solids and Layer Structures.
5.2.1 Solids Composed of Smaller Molecules.
5.2.2 Organic Monolayer and Multilayer Stacks.
5.2.3 Synthetic Organic Polymers.
5.2.4 Biopolymers.
5.3 Molecular Monolayer and Layer Architectures.
5.3.1 Langmuir-Blodgett Films.
5.3.2 Self-assembled Surface Films.
5.3.3 Binding of Molecules on Solid Substrate Surfaces.
5.3.4 Secondary Coupling of Molecular Manolayers.
5.3.5 Categories of Molecular Layers.
5.3.6 Molecular Coupling Components (Linkers) and Distance Components (Spacers).
5.3.7 Definition of Binding Spots on Solid Substrates.
5.4 Architectures with Single Molecules.
5.4.1 Single Molecules as Nanostructures.
5.4.2 Strategic of Molecular Construction.
5.4.3 Biogenic and Bioanalogous Nanoarchitectures.
5.4.4 DNA Nanoarchitectures.
5.4.5 Synthetic Supramolecules.
5.4.6 Nanoparticles and Nanocompartments.
5.5 Combination of Molecular Architectures and Nanoparticles with Planar Technical Structures.
6. Characterization of Nanostructures.
6.1 Geometrical Characterization.
6.1.1 Layer Thickness and Vertical Structure Dimensions.
6.1.2 Lateral Dimensions.
6.1.3 Structures that Assist Measurement.
6.2 Characterization of Composition of Layers and Surfaces.
6.2.1 Atomic Composition.
6.2.2 Characterization of the Chemical Surface.
6.3 Functional Characterization of Nanostructures.
7. Nanotransducers.
7.1 Design of Nanotransducers.
7.2 Nanomechanical Elements.
7.2.1 Nanomechanical Sensors.
7.2.2 Nanometer-precision Position Measurements with Conventional Techniques.
7.2.3 Electrically Controlled Nanoactuators.
7.2.4 Chemically Driven Nanoactuators.
7.2.5 Regidity of Nanoactuators.
7.3 Nanoelectronic Devices.
7.3.1 Electrical Contacts and Nanowires.
7.3.2 Nanostructured Tunneling Barriers.
7.3.3 Quantum Dots and Localization of Elementary Particles.
7.3.4 Nanodiodes.
7.3.5 Electron Islands and Nanotransistors.
7.3.6 Nanoswitches, Molecular Switches and Logic Elements.
7.4 Nanooptical Devices.
7.4.1 Nanostructures as Optical Sensors.
7.4.2 Nanostructured Optical Actuators.
7.4.3 Nanooptical Switching and Conversion Elements.
7.5 Magnetic Nanotransducers.
7.6 Chemical Nanoscale Sensors and Actuators.
8. Techncial Nanosystems.
8.1 What are Nanosystems?
8.2 Systems and Nanocomponents.
8.3 Entire Systems with Nanometer Dimensions.
Table of Examples.
References.
Index
商品描述(中文翻譯)
描述:
與納米技術相關的技術革命期望與納米技術的生成、修改和利用最小尺寸的物體已經滲透到科學和研究中,沒有納米技術已經不可想像。它已經發展成為一個獨立的跨學科領域,其巨大成功歸功於物理、機械和分子技術的有目的結合。本書首先介紹了微技術和化學的最重要基礎,這些基礎是形成納米尺度結構的理解的基礎,然後通過各種實例說明了從不同材料製造納米結構的方法。隨後,介紹了生成結構的表徵方法。通過這個迷人的介紹,科學家和工程師都可以獲得對納米技術的“另一面”的洞察。
目錄:
1. 簡介
1.1 進入納米世界的方式
1.1.1 從微技術到納米技術
1.1.2 納米結構的定義
1.1.3 納米世界的洞察
1.2 納米技術的基礎構件
1.3 交互作用和拓撲
1.4 納米世界的微觀環境
2. 分子基礎
2.1 粒子和鍵結
2.1.1 納米技術中的化學鍵結
2.1.2 范德華力相互作用
2.1.3 偶極-偶極相互作用
2.1.4 離子相互作用
2.1.5 金屬鍵結
2.1.6 共價鍵結
2.1.7 配位鍵結
2.1.8 氫鍵結
2.1.9 多價鍵結
2.2 化學結構
2.2.1 鍵結拓撲
2.2.2 共價結構的構建模塊
2.2.3 協調結構的單位
2.2.4 通過內部強度層次結構的複雜結構組裝
2.2.5 反應概率和反應平衡
3. 微技術基礎
3.1 平面技術
3.2 薄層制備
3.2.1 表面基材的條件和預處理
3.2.2 氣相沉積層
3.2.3 蒸發
3.2.4 濺射
3.2.5 化學氣相沉積
3.2.6 電鍍
3.2.7 旋轉沉積(旋轉塗膜)
3.2.8 遮罩沉積技術
3.3 超薄無機層和表面結合的納米顆粒的制備
3.3.1 通過真空沉積過程制備超薄層
3.3.2 從液相沉積超薄膜
3.3.3 化學表面修飾法原位生成超薄無機膜
3.3.4 在異有機材料上原位形成超薄無機層
3.3.5 納米顆粒的固定
3.3.6 原位形成無機納米顆粒
3.4 結構生成和光刻遮罩的制備
3.4.1 黏著遮罩技術
3.4.2 光刻術中的抗藥性
3.4.3 串行圖案轉移
3.4.5 無遮罩結構生成
3.4.6 軟光刻術
3.5 蝕刻過程
3.5.1 蝕刻速率和選擇性
3.5.2 同向和非同向蝕刻過程
3.5.3 蝕刻過程中的光刻分辨率
3.5.4 干法蝕刻過程
3.5.6 高分辨率干法蝕刻技術
3.5.7 納米光刻蝕刻過程的遮罩選擇
3.6 封裝
3.7 技術微結構中的生物和生物類似分子
4. 納米結構的制備
4.1 制備原則
4.1.1 納米結構的減法和加法創建
4.1.2 利用脫膜過程生成納米結構
4.1.3 納米技術的制備原則