Linear Regression
暫譯: 線性回歸
David J. Olive
- 出版商: Springer
- 出版日期: 2018-07-25
- 售價: $4,560
- 貴賓價: 9.5 折 $4,332
- 語言: 英文
- 頁數: 508
- 裝訂: Paperback
- ISBN: 3319856081
- ISBN-13: 9783319856087
海外代購書籍(需單獨結帳)
相關主題
商品描述
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models.
There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models.This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics.
商品描述(中文翻譯)
這段文字涵蓋了多重線性回歸和一些實驗設計模型。該文本使用反應圖來可視化模型並檢測異常值,並不假設誤差分佈具有已知的參數分佈,開發了在誤差分佈未知時仍然有效的預測區間,建議使用自助法(bootstrap)假設檢驗,這在變數選擇後可能對推斷有用,並為具有 m 個反應變數的多變量線性回歸模型開發了預測區域和大樣本理論。多變量預測區域與置信區域之間的關係提供了一種簡單的方法來自助法生成置信區域。這些置信區域通常提供了一種實用的方法來檢驗假設。還有一章專門討論廣義線性模型和廣義加法模型。
有許多 R 函數可以生成反應圖和殘差圖,模擬預測區間和假設檢驗,檢測異常值,以及為多重線性回歸或實驗設計模型選擇反應變換。
這本書適合具有堅實數學背景的研究生和本科生。該文本的先修課程包括線性代數和基於微積分的統計課程。