An Introduction to Nonparametric Statistics
暫譯: 非參數統計入門

Kolassa, John E.

  • 出版商: CRC
  • 出版日期: 2020-09-29
  • 售價: $4,110
  • 貴賓價: 9.5$3,905
  • 語言: 英文
  • 頁數: 212
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367194848
  • ISBN-13: 9780367194840
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

商品描述

This textbook presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression.

Attention is payed to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included.

Important techniques covered include

  1. Rank-based techniques, including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests, are presented.
  2. Tests are inverted to produce estimates and confidence intervals.
  3. Multivariate tests are explored.
  4. Techniques reflecting the dependence of a response variable on explanatory variables are presented.
  5. Density estimation is explored.
  6. The bootstrap and jackknife are discussed.

This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, a course in elementary probability, and a course in regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

商品描述(中文翻譯)

這本教科書介紹了在缺乏對生成數據的分佈強假設的情況下進行統計分析的技術。以排名為基礎的技術和重抽樣技術佔據了重要地位,但也考慮了穩健技術。這些技術包括單樣本檢驗和估計、多樣本檢驗和估計,以及迴歸分析。

本書重視該領域的智識發展,並對文獻參考進行了徹底的回顧。計算工具使用 R 和 SAS 開發,並通過範例進行說明。還包括旨在加強範例的練習題。

重要的技術包括:

1. 介紹了以排名為基礎的技術,包括符號檢驗、Kruskal-Wallis 檢驗、Friedman 檢驗、Mann-Whitney 檢驗和 Wilcoxon 檢驗。
2. 檢驗被反轉以產生估計值和信賴區間。
3. 探討了多變量檢驗。
4. 介紹了反映響應變數對解釋變數依賴性的技術。
5. 探討了密度估計。
6. 討論了自助法(bootstrap)和刪除法(jackknife)。

本書旨在為應用統計的研究生而設。這門課程最好在完成統計方法學的入門課程、基礎概率課程和迴歸課程後修讀。數學先修知識包括微積分(涵蓋多變量微分和積分),理想情況下還應修讀矩陣代數課程。

作者簡介

John Kolassa is Professor of Statistics and Biostatistics, Rutgers, the State University of New Jersey.

作者簡介(中文翻譯)

約翰·科拉薩(John Kolassa)是新澤西州立大學羅格斯(Rutgers, the State University of New Jersey)統計學與生物統計學的教授。