Essential Statistical Inference
暫譯: 基本統計推論

Dennis D. D. Boos

  • 出版商: Springer
  • 出版日期: 2015-03-06
  • 售價: $5,190
  • 貴賓價: 9.5$4,931
  • 語言: 英文
  • 頁數: 588
  • 裝訂: Paperback
  • ISBN: 1489987932
  • ISBN-13: 9781489987938
  • 海外代購書籍(需單獨結帳)

商品描述

​This book is for students and researchers who have had a first year graduate level mathematical statistics course.  It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.

An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory.  A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.

Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​

商品描述(中文翻譯)

這本書是為已修習過一年研究生級數學統計課程的學生和研究人員所編寫。內容涵蓋了經典的似然估計、貝葉斯推斷和置換推斷;基本漸近分佈理論的介紹;以及現代主題如M-估計、刪除法(jackknife)和自助法(bootstrap)。書中穿插了大量的R程式碼,並提供了許多範例和習題。

一個重要的目標是使這些主題對廣泛的讀者群體易於理解,並且對測度理論的依賴較少。典型的學期課程包括第1至第6章(基於似然的估計和檢驗、貝葉斯推斷、基本漸近結果),以及從M-估計和相關的檢驗及重抽樣方法中選取的內容。

Dennis Boos和Len Stefanski是北卡羅來納州立大學統計系的教授。他們的研究範圍廣泛,通常帶有穩健性角度,儘管Stefanski也以集中於測量誤差的研究而聞名,包括合著一本關於非線性測量誤差模型的書籍。近年來,這兩位作者共同研究變數選擇方法。