Dictionary Learning Algorithms and Applications
暫譯: 字典學習演算法與應用
Bogdan Dumitrescu, Paul Irofti
- 出版商: Springer
- 出版日期: 2018-04-25
- 售價: $6,780
- 貴賓價: 9.5 折 $6,441
- 語言: 英文
- 頁數: 284
- 裝訂: Hardcover
- ISBN: 3319786733
- ISBN-13: 9783319786735
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book covers all the relevant dictionary learning algorithms, presenting them in full detail and showing their distinct characteristics while also revealing the similarities. It gives implementation tricks that are often ignored but that are crucial for a successful program. Besides MOD, K-SVD, and other standard algorithms, it provides the significant dictionary learning problem variations, such as regularization, incoherence enforcing, finding an economical size, or learning adapted to specific problems like classification. Several types of dictionary structures are treated, including shift invariant; orthogonal blocks or factored dictionaries; and separable dictionaries for multidimensional signals. Nonlinear extensions such as kernel dictionary learning can also be found in the book. The discussion of all these dictionary types and algorithms is enriched with a thorough numerical comparison on several classic problems, thus showing the strengths and weaknesses of each algorithm. A few selected applications, related to classification, denoising and compression, complete the view on the capabilities of the presented dictionary learning algorithms. The book is accompanied by code for all algorithms and for reproducing most tables and figures.
- Presents all relevant dictionary learning algorithms - for the standard problem and its main variations - in detail and ready for implementation;
- Covers all dictionary structures that are meaningful in applications;
- Examines the numerical properties of the algorithms and shows how to choose the appropriate dictionary learning algorithm.
商品描述(中文翻譯)
這本書涵蓋了所有相關的字典學習演算法,詳細介紹它們的特點,同時揭示它們之間的相似性。書中提供了常被忽視但對成功實現程式至關重要的實作技巧。除了 MOD、K-SVD 和其他標準演算法外,還提供了重要的字典學習問題變體,例如正則化、不一致性強制、尋找經濟的大小,或針對特定問題(如分類)進行適應性學習。書中處理了幾種類型的字典結構,包括平移不變的字典、正交區塊或分解字典,以及用於多維信號的可分離字典。書中還包含了非線性擴展,例如核字典學習。對所有這些字典類型和演算法的討論,通過對幾個經典問題的徹底數值比較來豐富,從而顯示每個演算法的優缺點。幾個與分類、去噪和壓縮相關的應用,完整展示了所呈現的字典學習演算法的能力。這本書附有所有演算法的程式碼,以及重現大多數表格和圖形的程式碼。
- 詳細介紹所有相關的字典學習演算法 - 針對標準問題及其主要變體 - 並準備好實作;
- 涵蓋所有在應用中有意義的字典結構;
- 檢視演算法的數值特性,並展示如何選擇適當的字典學習演算法。