Nonlinear Eigenproblems in Image Processing and Computer Vision (Advances in Computer Vision and Pattern Recognition)
暫譯: 影像處理與計算機視覺中的非線性特徵值問題(計算機視覺與模式識別進展)
Guy Gilboa
- 出版商: Springer
- 出版日期: 2018-04-17
- 售價: $5,260
- 貴賓價: 9.5 折 $4,997
- 語言: 英文
- 頁數: 172
- 裝訂: Hardcover
- ISBN: 3319758462
- ISBN-13: 9783319758466
-
相關分類:
Computer Vision
海外代購書籍(需單獨結帳)
商品描述
This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case.
Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processing and computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework for one-homogeneous functionals, and applies this framework for denoising, texture processing and image fusion; proposes novel ways to solve the nonlinear eigenvalue problem using special flows that converge to eigenfunctions; examines graph-based and nonlocal methods, for which a TV eigenvalue analysis gives rise to strong segmentation, clustering and classification algorithms; presents an approach to generalizing the nonlinear spectral concept beyond the convex case, based on pixel decay analysis; discusses relations to other branches of image processing, such as wavelets and dictionary based methods.This original work offers fascinating new insights into established signal processing techniques, integrating deep mathematical concepts from a range of different fields, which will be of great interest to all researchers involved with image processing and computer vision applications, as well as computations for more general scientific problems.商品描述(中文翻譯)
這本獨特的文本/參考書提供了一個全新的視角來看待非線性處理,通過非線性特徵值分析,強調一階齊次凸函數如何誘導可以在特徵值框架內分析的非線性算子。書中首先介紹了數學背景,並總結了經典變分算法在視覺中的應用。接著,重點放在基於非線性特徵問題的新多尺度表示的基礎和應用上。最後,書中討論了尋找非線性特徵函數的新數值技術,以及超越凸情況的有前景的研究方向。
主題和特點:介紹經典傅立葉變換及其相關算子和能量,並探討這些概念如何在非線性情況下進行推廣;回顧基本的數學概念,簡要概述使用變分和基於流的方法來解決圖像處理和計算機視覺算法;描述全變差(TV)函數的性質,以及非線性特徵函數與凸函數之間的關係;提供一個一階齊次函數的譜框架,並將此框架應用於去噪、紋理處理和圖像融合;提出使用特殊流來解決非線性特徵值問題的新方法,這些流會收斂到特徵函數;檢視基於圖形和非局部方法,對於這些方法,TV特徵值分析產生了強大的分割、聚類和分類算法;提出一種基於像素衰減分析的方式,將非線性譜概念推廣到超越凸情況;討論與其他圖像處理分支的關係,例如小波和基於字典的方法。
這部原創作品提供了對既有信號處理技術的迷人新見解,整合了來自不同領域的深奧數學概念,將對所有從事圖像處理和計算機視覺應用的研究人員,以及更一般科學問題的計算有很大的吸引力。