Visual Knowledge Discovery and Machine Learning (Intelligent Systems Reference Library)
暫譯: 視覺知識發現與機器學習(智能系統參考文獻庫)
Boris Kovalerchuk
- 出版商: Springer
- 出版日期: 2018-01-26
- 售價: $7,800
- 貴賓價: 9.5 折 $7,410
- 語言: 英文
- 頁數: 317
- 裝訂: Hardcover
- ISBN: 3319730398
- ISBN-13: 9783319730394
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
商品描述(中文翻譯)
本書結合了高維數據可視化和機器學習的優勢,旨在識別複雜的 n-D 數據模式。它大幅擴展了可逆無損的 2-D 和 3-D 可視化方法的類別,這些方法能夠保留 n-D 資訊。這類可視化表示法稱為一般線座標(General Lines Coordinates, GLC),並附帶一套用於 n-D 數據分類、聚類、降維和帕累托優化的算法。書中包含了 GLC 的數學和理論分析及方法論,並在多個案例研究中展示了這一新方法的實用性。這些案例包括挑戰者號災難、全球飢餓數據、健康監測、影像處理、文本分類、貨幣匯率的市場預測、計算機輔助醫療診斷等。因此,本書為數據科學新興領域的學生、研究人員和實務工作者提供了一個獨特的資源。