Topological Insulators and Topological Superconductors (Hardcover)
暫譯: 拓撲絕緣體與拓撲超導體 (精裝版)
B. Andrei Bernevig
- 出版商: Princeton University
- 出版日期: 2013-04-07
- 售價: $4,750
- 貴賓價: 9.5 折 $4,513
- 語言: 英文
- 頁數: 260
- 裝訂: Hardcover
- ISBN: 069115175X
- ISBN-13: 9780691151755
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,300$1,274 -
$900$855 -
$1,290$1,226 -
$3,780$3,591 -
$449Fortran 95/2003程序設計(第三版)
-
$3,320$3,154 -
$1,960$1,921 -
$1,420$1,392 -
$500$425 -
$1,450$1,421 -
$1,680$1,646 -
$1,660$1,627 -
$380$323 -
$3,660$3,477 -
$1,580$1,548 -
$1,620$1,588 -
$954$906 -
$505垂直型 GaN 和 SiC 功率器件
-
$834$792 -
$590$531 -
$680$612 -
$1,014$963
商品描述
<內容簡介>
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom.
The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
<章節目錄>
1 Introduction 1
2 Berry Phase 6
2.1 General Formalism 6
2.2 Gauge-Independent Computation of the Berry Phase 8
2.3 Degeneracies and Level Crossing 10
2.3.1 Two-Level System Using the Berry Curvature 10
2.3.2 Two-Level System Using the Hamiltonian Approach 11
2.4 Spin in aMagnetic Field 13
2.5 Can the Berry Phase Be Measured? 14
2.6 Problems 14
3 Hall Conductance and Chern Numbers 15
3.1 Current Operators 15
3.1.1 Current Operators from the Continuity Equation 16
3.1.2 Current Operators from Peierls Substitution 17
3.2 Linear Response to an Applied External Electric Field 18
3.2.1 The Fluctuation Dissipation Theorem 20
3.2.2 Finite-Temperature Green’s Function 22
3.3 Current-Current Correlation Function and Electrical Conductivity 23
3.4 Computing the Hall Conductance 24
3.4.1 Diagonalizing the Hamiltonian and the Flat-Band Basis 25
3.5 Alternative Formof the Hall Response 29
3.6 Chern Number as an Obstruction to Stokes’ Theorem over the Whole BZ 30
3.7 Problems 32
4 Time-Reversal Symmetry 33
4.1 Time Reversal for Spinless Particles 33
4.1.1 Time Reversal in Crystals for Spinless Particles 34
4.1.2 Vanishing of Hall Conductance for T-Invariant Spinless Fermions 35
4.2 Time Reversal for Spinful Particles 35
4.3 Kramers’ Theorem 36
4.4 Time-Reversal Symmetry in Crystals for Half-Integer Spin Particles 37
4.5 Vanishing of Hall Conductance for T-Invariant Half-Integer Spin
Particles 39
4.6 Problems 40
5 Magnetic Field on the Square Lattice 41
5.1 Hamiltonian and Lattice Translations 41
5.2 Diagonalization of the Hamiltonian of a 2-D Lattice in aMagnetic Field 44
5.2.1 Dependence on ky 46
5.2.2 Dirac Fermions in the Magnetic Field on the Lattice 47
5.3 Hall Conductance 49
5.3.1 Diophantine Equation and Streda Formula Method 49
5.4 Explicit Calculation of the Hall Conductance 51
5.5 Problems 59
6 Hall Conductance and Edge Modes: The Bulk-Edge Correspondence 60
6.1 Laughlin’s Gauge Argument 60
6.2 The TransferMatrixMethod 62
6.3 Edge Modes 65
6.4 Bulk Bands 65
6.5 Problems 69
7 Graphene 70
7.1 Hexagonal Lattices 70
7.2 Dirac Fermions 72
7.3 Symmetries of a Graphene Sheet 72
7.3.1 Time Reversal 73
7.3.2 Inversion Symmetry 73
7.3.3 Local Stability of Dirac Points with Inversion and Time Reversal 74
7.4 Global Stability of Dirac Points 76
7.4.1 C3 Symmetry and the Position of the Dirac Nodes 76
7.4.2 Breaking of C3 Symmetry 79
7.5 Edge Modes of the Graphene Layer 80
7.5.1 Chains with Even Number of Sites 82
7.5.2 Chains with Odd Number of Sites 85
7.5.3 Influence of Different Mass Terms on the Graphene Edge Modes 89
7.6 Problems 90
8 Simple Models for the Chern Insulator 91
8.1 Dirac Fermions and the Breaking of Time-Reversal Symmetry 91
8.1.1 When the Matrices r Correspond to Real Spin 91
8.1.2 When the Matrices r Correspond to Isospin 92
8.2 Explicit Berry Potential of a Two-Level System 92
8.2.1 Berry Phase of a Continuum Dirac Hamiltonian 92
8.2.2 The Berry Phase for a Generic Dirac Hamiltonian in Two Dimensions 93
8.2.3 Hall Conductivity of a Dirac Fermion in the Continuum 94
8.3 Skyrmion Number and the Lattice Chern Insulator 95
8.3.1 M > 0 Phase and M < .4 Phase 96
8.3.2 The .2 < M < 0 Phase 96
8.3.3 The .4 < M < .2 Phase 98
8.3.4 Back to the Trivial State for M < .4 98
8.4 Determinant Formula for the Hall Conductance of a Generic Dirac
Hamiltonian 99
8.5 Behavior of the Vector Potential on the Lattice 99
8.6 The Problem of Choosing a Consistent Gauge in the Chern Insulator 100
8.7 Chern Insulator in aMagnetic Field 102
8.8 Edge Modes and the Dirac Equation 103
8.9 Haldane’s Graphene Model 104
8.9.1 Symmetry Properties of the Haldane Hamiltonian 106
8.9.2 Phase Diagram of the Haldane Hamiltonian 106
8.10 Problems 107
9 Time-Reversal-Invariant Topological Insulators 109
9.1 The Kane andMeleModel: Continuum Version 109
9.1.1 Adding Spin 110
9.1.2 Spin ↑ and Spin ↓ 112
9.1.3 Rashba Term 112
9.2 The Kane and Mele Model: Lattice Version 113
9.3 First Topological Insulator: Mercury Telluride QuantumWells 117
9.3.1 Inverted QuantumWells 117
9.4 Experimental Detection of the Quantum Spin Hall State 120
9.5 Problems 121
10 Z2 Invariants 123
10.1 Z2 Invariant as Zeros of the Pfaffian 123
10.1.1 Pfaffian in the Even Subspace 124
10.1.2 The Odd Subspace 125
10.1.3 Example of an Odd Subspace: da = 0 Subspace 125
10.1.4 Zeros of the Pfaffian 126
10.1.5 Explicit Example for the Kane and Mele Model 127
10.2 Theory of Charge Polarization in One Dimension 128
10.3 Time-Reversal Polarization 130
10.3.1 Non-Abelian Berry Potentials at k, .k 133
10.3.2 Proof of the Unitarity of the Sewing Matrix B 134
10.3.3 A New Pfaffian Z2 Index 134
10.4 Z2 Index for 3-D Topological Insulators 138
10.5 Z2 Number as an Obstruction 141
10.6 Equivalence between Topological Insulator Descriptions 144
10.7 Problems 145
11 Crossings in Different Dimensions 147
11.1 Inversion-Asymmetric Systems 148
11.1.1 Two Dimensions 149
11.1.2 Three Dimensions 149
11.2 Inversion-Symmetric Systems 151
11.2.1 ga = gb 151
11.2.2 ga = .gb 152
11.3 Mercury Telluride Hamiltonian 154
11.4 Problems 156
12 Time-Reversal Topological Insulators with Inversion Symmetry 158
12.1 Both Inversion and Time-Reversal Invariance 159
12.2 Role of Spin-Orbit Coupling 162
12.3 Problems 163
13 Quantum Hall Effect and Chern Insulators in Higher Dimensions 164
13.1 Chern Insulator in Four Dimensions 164
13.2 Proof That the Second Chern Number Is Topological 166
13.3 Evaluation of the Second Chern Number: From a Green’s Function
Expression to the Non-Abelian Berry Curvature 167
13.4 Physical Consequences of the Transport Law of the 4-D Chern
Insulator 169
13.5 Simple Example of Time-Reversal-Invariant Topological Insulators with
Time-Reversal and Inversion Symmetry Based on Lattice Dirac Models 172
13.6 Problems 175
14 Dimensional Reduction of 4-D Chern Insulators to 3-D Time-Reversal
Insulators 177
14.1 Low-Energy Effective Action of (3 + 1)-D Insulators and the
Magnetoelectric Polarization 177
14.2 Magnetoelectric Polarization for a 3-D Insulator with Time-Reversal
Symmetry 181
14.3 Magnetoelectric Polarization for a 3-D Insulator with Inversion
Symmetry 182
14.4 3-D Hamiltonians with Time-Reversal Symmetry and/or Inversion
Symmetry as Dimensional Reductions of 4-D Time-Reversal-Invariant
Chern Insulators 184
14.5 Problems 185
15 Experimental Consequences of the Z2 Topological Invariant 186
15.1 Quantum Hall Effect on the Surface of a Topological Insulator 186
15.2 Physical Properties of Time-Reversal Z2-Nontrivial Insulators 187
15.3 Half-Quantized Hall Conductance at the Surface of Topological
Insulators with Ferromagnetic Hard Boundary 188
15.4 Experimental Setup for Indirect Measurement of the Half-Quantized
Hall Conductance on the Surface of a Topological Insulator 189
15.5 Topological Magnetoelectric Effect 189
15.6 Problems 191
16 Topological Superconductors in One and Two Dimensions by
Taylor L. Hughes 193
16.1 Introducing the Bogoliubov-de-Gennes (BdG) Formalism for s-Wave
Superconductors 193
16.2 p-Wave Superconductors in One Dimension 196
16.2.1 1-D p-WaveWire 196
16.2.2 Lattice p-WaveWire and Majorana Fermions 199
16.3 2-D Chiral p-Wave Superconductor 201
16.3.1 Bound States on Vortices in 2-D Chiral p-wave Superconductors 206
16.4 Problems 211
17 Time-Reversal-Invariant Topological Superconductors by Taylor L. Hughes 214
17.1 Superconducting Pairing with Spin 214
17.2 Time-Reversal-Invariant Superconductors in Two Dimensions 215
17.2.1 Vortices in 2-D Time-Reversal-Invariant Superconductors 218
17.3 Time-Reversal-Invariant Superconductors in Three Dimensions 219
17.4 Finishing the Classification of Time-Reversal-Invariant
Superconductors 222
17.5 Problems 224
18 Superconductivity and Magnetism in Proximity to Topological Insulator
Surfaces by Taylor L. Hughes 226
18.1 Generating 1-D Topological Insulators and Superconductors on the
Edge of the Quantum-Spin Hall Effect 226
18.2 Constructing Topological States from Interfaces on the Boundary of
Topological Insulators 228
18.3 Problems 234
APPENDIX: 3-D Topological Insulator in a Magnetic Field 237
References 241
Index
商品描述(中文翻譯)
內容簡介
這本研究生級的教科書是拓撲絕緣體和超導體領域的首部教學綜述,這是凝聚態物理中最令人興奮的研究領域之一。書中展示了最新的發展,同時提供了所有必要的計算,以便對該學科進行自足且完整的描述,對於準備在此領域工作的研究生和研究人員來說,這本書是理想的參考資料,無論在課堂內外都將是必不可少的參考書籍。
本書從簡單的概念開始,例如 Berry 相位、Dirac 费米子、霍爾導電率及其與拓撲的關聯,以及在磁場中晶格電子的 Hofstadter 問題。接著解釋了物質的拓撲相,如 Chern 絕緣體、二維和三維拓撲絕緣體,以及 Majorana p-wave 電纜。此外,本書還涵蓋了拓撲超導體中漩渦上的零模式、時間反演拓撲超導體,以及拓撲響應/場論和拓撲指數。書中還分析了凝聚態理論中的近期主題,並以調查活躍的研究子領域作結,如具有點群對稱性的絕緣體和拓撲半金屬的穩定性。每章結尾的問題提供了測試知識和參與前沿研究問題的機會。《拓撲絕緣體與拓撲超導體》將為研究生和研究人員提供在這一快速發展領域展開研究所需的物理理解和數學工具。
章節目錄
1 引言 1
2 Berry 相位 6
2.1 一般形式 6
2.2 與規範無關的 Berry 相位計算 8
2.3 簡併與能級交叉 10
2.3.1 使用 Berry 曲率的二能級系統 10
2.3.2 使用哈密頓量方法的二能級系統 11
2.4 磁場中的自旋 13
2.5 Berry 相位可以被測量嗎? 14
2.6 問題 14
3 霍爾導電率與 Chern 數 15
3.1 電流算符 15
3.1.1 來自連續性方程的電流算符 16
3.1.2 來自 Peierls 代換的電流算符 17
3.2 對施加的外部電場的線性響應 18
3.2.1 波動耗散定理 20
3.2.2 有限溫度格林函數 22
3.3 電流-電流相關函數與電導率 23
3.4 計算霍爾導電率 24
3.4.1 對哈密頓量進行對角化和扁平帶基 25
3.5 霍爾響應的替代形式 29
3.6 Chern 數作為整個布里淵區上 Stokes 定理的障礙 30
3.7 問題 32
4 時間反演對稱性 33
4.1 無自旋粒子的時間反演 33
4.1.1 無自旋粒子在晶體中的時間反演 34
4.1.2 T 不變的無自旋費米子霍爾導電率消失 35
4.2 有自旋粒子的時間反演 35
4.3 Kramers 定理 36
4.4 半整數自旋粒子在晶體中的時間反演對稱性 37
4.5 T 不變的半整數自旋粒子霍爾導電率消失 39
4.6 問題 40
5 磁場下的方格晶格 41
5.1 哈密頓量與晶格平移 41
5.2 磁場中二維晶格的哈密頓量對角化 44
5.2.1 對 ky 的依賴 46
5.2.2 晶格中磁場下的 Dirac 费米子 47
5.3 霍爾導電率 49
5.3.1 Diophantine 方程與 Streda 公式方法 49
5.4 霍爾導電率的顯式計算 51
5.5 問題 59
6 霍爾導電率與邊緣模式:體-邊對應 60
6.1 Laughlin 的規範論證 60
6.2 轉移矩陣方法 62
6.3 邊緣模式 65
6.4 體帶 65
6.5 問題 69
7 石墨烯 70
7.1 六角晶格 70
7.2 Dirac 费米子 72
7.3 石墨烯片的對稱性 72
7.3.1 時間反演 73
7.3.2 反演對稱性 73
7.3.3 具有反演和時間反演的 Dirac 點的局部穩定性 74
7.4 Dirac 點的全局穩定性 76
7.4.1 C3 對稱性與 Dirac 節點的位置 76
7.4.2 C3 對稱性的破壞 79
7.5 石墨烯層的邊緣模式 80
7.5.1 偶數位點的鏈 82
7.5.2 奇數位點的鏈 85
7.5.3 不同質量項對石墨烯邊緣模式的影響 89
7.6 問題 90
8 Chern 絕緣體的簡單模型 91
8.1 Dirac 费米子與時間反演對稱性的破壞 91
8.1.1 當矩陣 r 對應於實自旋時 91
8.1.2 當矩陣 r 對應於同位旋時 92
8.2 二能級系統的顯式 Berry 势 92
8.2.1 連續 Dirac 哈密頓量的 Berry 相位 92
8.2.2 二維一般 Dirac 哈密頓量的 Berry 相位 93
8.2.3 連續中 Dirac 费米子的霍爾導電率 94
8.3 Skyrmion 數與晶格 Chern 絕緣體 95
8.3.1 M > 0 相與 M < 0.4 相 96
8.3.2 0.2 < M < 0 相 96
8.3.3 0.4 < M < 0.2 相 98
8.3.4 當 M < 0.4 時回到平凡狀態 98
8.4 一般 Dirac 哈密頓量的霍爾導電率行列式公式 99
8.5 晶格上向量勢的行為 99
8.6 Chern 絕緣體中選擇一致規範的問題 100
8.7 磁場中的 Chern 絕緣體 102
8.8 邊緣模式與 Dirac 方程 103
8.9 Haldane 的石墨烯模型 104
8.9.1 Haldane 哈密頓量的對稱性質 106
8.9.2 Haldane 哈密頓量的相圖 106
8.10 問題 107
9 時間反演不變的拓撲絕緣體 109
9.1 Kane 和 Mele 模型:連續版本 109
9.1.1 添加自旋 110
9.1.2 自旋向上與自旋向下 112
9.1.3 Rashba 項 112
9.2 Kane 和 Mele 模型:晶格版本 113
9.3 第一個拓撲絕緣體:汞碲量子井 117
9.3.1 反轉量子井 117
9.4 量子自旋霍爾態的實驗檢測 120
9.5 問題 121
10 Z2 不變量 123
10.1 Z2 不變量作為 Pfaffian 的零點 123
10.1.1 偶子空間中的 Pfaffian 124
10.1.2 奇子空間 125
10.1.3 奇子空間的例子:da = 0 子空間 125
10.1.4 Pfaffian 的零點 126
10.1.5 Kane 和 Mele 模型的顯式例子 127
10.2 一維電荷極化理論 128
10.3 時間反演極化 130
10.3.1 在 k 和 -k 的非阿貝爾 Berry 势 133
10.3.2 縫合矩陣 B 的單位性證明 134
10.3.3 新的 Pfaffian Z2 指數 134
10.4 三維拓撲絕緣體的 Z2 指數 138
10.5 Z2 數作為障礙 141
10.6 拓撲絕緣體描述之間的等價性 144
10.7 問題 145
11 不同維度的交叉 147
11.1 反演不對稱系統 148
11.1.1 二維 149
11.1.2 三維 149
11.2 反演對稱系統 151
11.2.1 ga = gb 151
11.2.2 ga = -gb 152
11.3 汞碲哈密頓量 154
11.4 問題 156
12 具有反演對稱性的時間反演拓撲絕緣體 158
12.1 同時具有反演和時間反演不變性 159
12.2 自旋-軌道耦合的角色 162
12.3 問題 163
13 量子霍爾效應與高維 Chern 絕緣體 164
13.1 四維 Chern 絕緣體 164
13.2 第二 Chern 數是拓撲的證明 166
13.3 第二 Chern 數的評估:從格林函數表達式到非阿貝爾 Berry 曲率 167
13.4 四維 Chern 絕緣體的傳輸法則的物理後果 169
13.5 基於晶格 Dirac 模型的時間反演不變拓撲絕緣體的簡單例子 172
13.6 問題 175
14 四維 Chern 絕緣體的維度降維到三維時間反演絕緣體 177
14.1 (3 + 1)-D 絕緣體的低能有效作用與磁電極化 177
14.2 具有時間反演對稱性的三維絕緣體的磁電極化 181
14.3 具有反演對稱性的三維絕緣體的磁電極化 182
14.4 具有時間反演對稱性和/或反演對稱性的三維哈密頓量作為四維時間反演不變 Chern 絕緣體的維度降維 184
14.5 問題 185
15 Z2 拓撲不變量的實驗後果 186
15.1 拓撲絕緣體表面的量子霍爾效應 186
15.2 時間反演 Z2 非平凡絕緣體的物理性質 187
15.3 在具有鐵磁硬邊界的拓撲絕緣體表面上的半量子霍爾導電率 188
15.4 拓撲絕緣體表面上半量子霍爾導電率的間接測量實驗設置 189
15.5 拓撲磁電效應 189
15.6 問題 191
16 由 Taylor L. Hughes 撰寫的一維和二維拓撲超導體 193
16.1 介紹 s-wave 超導體的 Bogoliubov-de-Gennes (BdG) 形式 193
16.2 一維 p-wave 超導體 196
16.2.1 一維 p-wave 電纜 196
16.2.2 晶格 p-wave 電纜與 Majorana 费米子 199
16.3 二維手性 p-wave 超導體 201
16.3.1 二維手性 p-wave 超導體中漩渦上的束縛態 206
16.4 問題 211
17 由 Taylor L. Hughes 撰寫的時間反演不變的拓撲超導體 214
17.1 具有自旋的超導配對 214
17.2 二維時間反演不變的超導體 215
17.2.1 二維時間反演不變超導體中的漩渦 218
17.3 三維時間反演不變的超導體 219
17.4 完成時間反演不變超導體的分類 222
17.5 問題 224
18 由 Taylor L. Hughes 撰寫的拓撲絕緣體表面附近的超導性與磁性 226
18.1 在量子自旋霍爾效應邊緣生成一維拓撲絕緣體和超導體 226
18.2 從拓撲狀態構建邊界上的界面