Granular Computing Based Machine Learning: A Big Data Processing Approach (Studies in Big Data)
暫譯: 基於粒狀計算的機器學習:大數據處理方法 (大數據研究)

Han Liu, Mihaela Cocea

  • 出版商: Springer
  • 出版日期: 2017-11-23
  • 售價: $5,260
  • 貴賓價: 9.5$4,997
  • 語言: 英文
  • 頁數: 113
  • 裝訂: Hardcover
  • ISBN: 331970057X
  • ISBN-13: 9783319700571
  • 相關分類: 大數據 Big-dataMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book explores the significant role of granular computing in advancing machine learning towards in-depth processing of big data. It begins by introducing the main characteristics of big data, i.e., the five Vs―Volume, Velocity, Variety, Veracity and Variability. The book explores granular computing as a response to the fact that learning tasks have become increasingly more complex due to the vast and rapid increase in the size of data, and that traditional machine learning has proven too shallow to adequately deal with big data.  
 
Some popular types of traditional machine learning are presented in terms of their key features and limitations in the context of big data. Further, the book discusses why granular-computing-based machine learning is called for, and demonstrates how granular computing concepts can be used in different ways to advance machine learning for big data processing. Several case studies involving big data are presented by using biomedical data and sentiment data, in order to show the advances in big data processing through the shift from traditional machine learning to granular-computing-based machine learning. Finally, the book stresses the theoretical significance, practical importance, methodological impact and philosophical aspects of granular-computing-based machine learning, and suggests several further directions for advancing machine learning to fit the needs of modern industries.

This book is aimed at PhD students, postdoctoral researchers and academics who are actively involved in fundamental research on machine learning or applied research on data mining and knowledge discovery, sentiment analysis, pattern recognition, image processing, computer vision and big data analytics. It will also benefit a broader audience of researchers and practitioners who are actively engaged in the research and development of intelligent systems.

商品描述(中文翻譯)

本書探討了顆粒計算在推進機器學習以深入處理大數據方面的重要角色。書中首先介紹了大數據的主要特徵,即五個 V——體量(Volume)、速度(Velocity)、多樣性(Variety)、真實性(Veracity)和變異性(Variability)。本書將顆粒計算視為對學習任務日益複雜的回應,這是由於數據量的龐大和快速增長,而傳統機器學習已被證明對於充分處理大數據來說過於淺顯。

本書介紹了一些流行的傳統機器學習類型,並在大數據的背景下闡述其主要特徵和局限性。此外,書中討論了為何需要基於顆粒計算的機器學習,並展示了如何以不同方式使用顆粒計算概念來推進大數據處理的機器學習。書中通過使用生物醫學數據和情感數據呈現了幾個涉及大數據的案例研究,以顯示從傳統機器學習轉向基於顆粒計算的機器學習在大數據處理方面的進展。最後,本書強調了基於顆粒計算的機器學習的理論意義、實踐重要性、方法論影響和哲學方面,並建議幾個進一步推進機器學習以滿足現代產業需求的方向。

本書的目標讀者為積極參與機器學習基礎研究或數據挖掘和知識發現、情感分析、模式識別、影像處理、計算機視覺和大數據分析應用研究的博士生、博士後研究人員和學術界人士。它也將使更廣泛的研究人員和從業者受益,這些人積極參與智能系統的研究和開發。