Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data (Hardcover)
暫譯: 多線性子空間學習:多維數據的降維 (精裝版)
Haiping Lu, Konstantinos N. Plataniotis, Anastasios Venetsanopoulos
- 出版商: CRC
- 出版日期: 2013-12-11
- 售價: $4,910
- 貴賓價: 9.5 折 $4,665
- 語言: 英文
- 頁數: 296
- 裝訂: Hardcover
- ISBN: 1439857245
- ISBN-13: 9781439857243
海外代購書籍(需單獨結帳)
商品描述
Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor.
Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL.
Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today’s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications.
The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB® source code, data, and other materials are available at www.comp.hkbu.edu.hk/~haiping/MSL.html
商品描述(中文翻譯)
由於感測器、儲存和網路技術的進步,數據在雲計算、行動互聯網和醫學影像等各種應用中,每天以不斷增加的速度生成。這些大型多維數據需要比傳統技術更有效的降維方案。為了滿足這一需求,多線性子空間學習(Multilinear Subspace Learning, MSL)直接從其自然的多維表示——張量(tensor)中降低大數據的維度。
《多線性子空間學習:多維數據的降維》全面介紹了基於張量的MSL在多維數據降維方面的理論和實踐。書中涵蓋了MSL的基本原理、算法和應用。
強調基本概念和系統層面的觀點,作者為解決當今在大多維數據處理中最有趣和具挑戰性的問題提供了基礎。他們追溯了MSL的歷史,詳細介紹了最近的進展,並探討了未來的發展和新興應用。
本書遵循統一的MSL框架公式,系統性地推導出代表性的MSL算法。它描述了這些算法的各種應用及其偽代碼。實施提示幫助從業者進一步開發、評估和應用。書中還為研究人員提供了有關機器學習和模式識別中大多維數據的有用理論信息。MATLAB®源代碼、數據和其他材料可在www.comp.hkbu.edu.hk/~haiping/MSL.html獲得。