Group Processes: Data-Driven Computational Approaches (Computational Social Sciences)
暫譯: 群體過程:數據驅動的計算方法(計算社會科學)

  • 出版商: Springer
  • 出版日期: 2017-03-15
  • 售價: $5,260
  • 貴賓價: 9.5$4,997
  • 語言: 英文
  • 頁數: 206
  • 裝訂: Hardcover
  • ISBN: 3319489402
  • ISBN-13: 9783319489407
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This volume introduces a series of different data-driven computational methods for analyzing group processes through didactic and tutorial-based examples. Group processes are of central importance to many sectors of society, including government, the military, health care, and corporations. Computational methods are better suited to handle (potentially huge) group process data than traditional methodologies because of their more flexible assumptions and capability to handle real-time trace data.

Indeed, the use of methods under the name of computational social science have exploded over the years. However, attention has been focused on original research rather than pedagogy, leaving those interested in obtaining computational skills lacking a much needed resource. Although the methods here can be applied to wider areas of social science, they are specifically tailored to group process research.

A number of data-driven methods adapted to group process research are demonstrated in this current volume. These include text mining, relational event modeling, social simulation, machine learning, social sequence analysis, and response surface analysis. In order to take advantage of these new opportunities, this book provides clear examples (e.g., providing code) of group processes in various contexts, setting guidelines and best practices for future work to build upon.

This volume will be of great benefit to those willing to learn computational methods. These include academics like graduate students and faculty, multidisciplinary professionals and researchers working on organization and management science, and consultants for various types of organizations and groups.

商品描述(中文翻譯)

本卷介紹了一系列不同的數據驅動計算方法,通過教學和教程範例來分析群體過程。群體過程對於社會的許多領域至關重要,包括政府、軍事、醫療保健和企業。計算方法比傳統方法更適合處理(潛在的龐大)群體過程數據,因為它們具有更靈活的假設和處理實時追蹤數據的能力。

事實上,隨著時間的推移,以計算社會科學為名的方法使用量激增。然而,注意力主要集中在原始研究上,而非教學,這使得那些希望獲得計算技能的人缺乏所需的資源。儘管這裡的方法可以應用於更廣泛的社會科學領域,但它們特別針對群體過程研究進行了調整。

本卷展示了一些適應於群體過程研究的數據驅動方法,包括文本挖掘、關聯事件建模、社會模擬、機器學習、社會序列分析和響應面分析。為了利用這些新機會,本書提供了清晰的範例(例如,提供代碼)來展示各種情境下的群體過程,並為未來的工作設定指導方針和最佳實踐。

本卷將對那些願意學習計算方法的人大有裨益。這些人包括研究生和教職員等學術界人士、多學科專業人士和從事組織與管理科學研究的研究人員,以及各類組織和團體的顧問。