Mathematical Problems in Data Science: Theoretical and Practical Methods
暫譯: 數據科學中的數學問題:理論與實踐方法

Li M. Chen, Zhixun Su, Bo Jiang

  • 出版商: Springer
  • 出版日期: 2015-12-22
  • 售價: $4,890
  • 貴賓價: 9.5$4,646
  • 語言: 英文
  • 頁數: 213
  • 裝訂: Hardcover
  • ISBN: 3319251252
  • ISBN-13: 9783319251257
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods.  For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark.  

This book contains three parts.  The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec

overy, geometric search, and computing models. 

Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks.  Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.

商品描述(中文翻譯)

這本書描述了數據科學和大數據中的當前問題。主要主題包括數據分類、圖切割(Graph Cut)、拉普拉斯矩陣(Laplacian Matrix)、Google Page Rank、高效算法、問題的困難性、不同類型的大數據、幾何數據結構、拓撲數據處理以及各種學習方法。對於未解決的問題,如不完整數據關係和重建,書中包括了可能的解決方案以及統計和計算方法來進行數據分析。初始章節專注於探索不完整數據集的特性以及數據點或數據集之間的部分連通性。討論還涵蓋了Netflix矩陣的補全問題;在大規模數據集上的機器學習方法;圖像分割和視頻搜索。這本書介紹了數據科學和大數據的軟件工具,如MapReduce、Hadoop和Spark。

這本書包含三個部分。第一部分探討數據科學的基本工具,包括基本的圖論方法、大規模數據集的統計和人工智慧方法。在第二部分中,章節專注於數據科學問題的程序性處理,包括機器學習方法、數學圖像和視頻處理、拓撲數據分析以及統計方法。最後一部分提供了有關變分學習、流形學習、商業和金融數據恢復、幾何搜索和計算模型的特殊主題案例研究。

《數據科學中的數學問題》是研究人員和專業人士在數據科學、信息系統和網絡領域的重要資源。學習計算機科學、電氣工程和數學的高級學生也會發現這些內容非常有幫助。