Linear Algebra: Theory, Intuition, Code (Paperback)
暫譯: 線性代數:理論、直覺與程式碼 (平裝本)

Cohen, Mike X.

  • 出版商: Sincxpress Bv
  • 出版日期: 2021-02-01
  • 售價: $1,500
  • 貴賓價: 9.5$1,425
  • 語言: 英文
  • 頁數: 584
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9083136604
  • ISBN-13: 9789083136608
  • 相關分類: 線性代數 Linear-algebra
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.
The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you
If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers (e.g., statistics or signal processing), then this book is for you. You'll see all the math concepts implemented in MATLAB and in Python.

Unique aspects of this book:
- Clear and comprehensible explanations of concepts and theories in linear algebra.
- Several distinct explanations of the same ideas, which is a proven technique for learning.
- Visualization using graphs, which strengthens the geometric intuition of linear algebra.
- Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand You need to know how to implement math in software
- Beginner to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition.
- Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis.
- Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition.
- Codes (MATLAB and Python) are provided to help you understand and apply linear algebra concepts on computers.
- A combination of hand-solved exercises and more advanced code challenges. Math is not a spectator sport

商品描述(中文翻譯)

線性代數或許是計算科學中最重要的數學分支,包括機器學習、人工智慧、數據科學、統計學、模擬、計算機圖形學、多變量分析、矩陣分解、信號處理等等。

傳統教科書中線性代數的呈現方式與專業人士在計算機上使用線性代數解決機器學習、數據科學、統計學和信號處理等現實應用的方式有所不同。例如,矩陣的「行列式」對於線性代數理論來說是重要的,但在實際應用中你真的需要使用行列式嗎?這個答案可能會讓你感到驚訝。

如果你有興趣學習線性代數和矩陣分析的數學概念,但同時也想將這些概念應用於計算機上的數據分析(例如,統計學或信號處理),那麼這本書就是為你而寫的。你將看到所有數學概念在 MATLAB 和 Python 中的實現。

這本書的獨特之處:

- 對線性代數概念和理論的清晰易懂的解釋。

- 對相同概念的多種不同解釋,這是一種經過驗證的學習技術。

- 使用圖形進行可視化,增強線性代數的幾何直覺。

- 在 MATLAB 和 Python 中的實現。來吧,在現實世界中,你從來不會手動解決數學問題,你需要知道如何在軟體中實現數學。

- 從初學者到中級的主題,包括向量、矩陣乘法、最小二乘投影、特徵分解和奇異值分解。

- 強調線性代數和矩陣分析的現代應用導向方面。

- 對對角化、特徵值和特徵向量以及奇異值分解的直觀可視化解釋。

- 提供代碼(MATLAB 和 Python),幫助你理解和應用計算機上的線性代數概念。

- 結合手動解題和更高級的代碼挑戰。數學不是一項觀賞運動。