Interpretability of Computational Intelligence-Based Regression Models (SpringerBriefs in Computer Science)
暫譯: 計算智慧回歸模型的可解釋性 (SpringerBriefs in Computer Science)
Tamás Kenesei
- 出版商: Springer
- 出版日期: 2015-11-10
- 售價: $2,390
- 貴賓價: 9.5 折 $2,271
- 語言: 英文
- 頁數: 92
- 裝訂: Paperback
- ISBN: 3319219413
- ISBN-13: 9783319219417
-
相關分類:
Computer-Science
海外代購書籍(需單獨結帳)
商品描述
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression.
The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning.
商品描述(中文翻譯)
這本書的關鍵理念是,鉸鏈超平面、神經網絡和支持向量機可以轉換為模糊模型,並且通過特殊的模型簡化和可視化技術,可以確保所產生的基於規則的系統的可解釋性。書的第一部分處理基於鉸鏈超平面的回歸樹的識別。接下來的部分則處理基於將神經網絡的隱藏層轉換為加法模糊規則基系統的神經網絡的驗證、可視化和結構簡化。最後,基於支持向量回歸和模糊模型的類比,提出了一種三步驟的模型簡化算法,以便在支持向量回歸的基礎上獲得可解釋的模糊回歸模型。
作者通過來自過程工程的實際案例展示了這些算法的實際應用,並提供可下載的Matlab代碼來支持文本內容。這本書適合計算智能和機器學習領域的研究人員、研究生和實務工作者。