Learning with Partially Labeled and Interdependent Data
暫譯: 使用部分標記和相互依賴數據的學習

Massih-Reza Amini, Nicolas Usunier

  • 出版商: Springer
  • 出版日期: 2015-05-21
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 106
  • 裝訂: Hardcover
  • ISBN: 3319157256
  • ISBN-13: 9783319157252
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data.

The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks.

Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data.

Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.

商品描述(中文翻譯)

本書發展了兩個關鍵的機器學習原則:半監督學習範式(semi-supervised paradigm)和依賴數據的學習(learning with interdependent data)。它揭示了新的應用,主要是與網絡相關的應用,這些應用超越了傳統的機器學習框架,通過依賴數據的學習來實現。

本書追溯了半監督學習範式和排序學習範式(learning to rank paradigm)如何從新的網絡應用中產生,導致大量異質文本數據的生成。它解釋了半監督學習技術的廣泛應用,但僅能對信息內容進行有限的分析,因此無法滿足許多與網絡相關任務的需求。

後面的章節探討了在大型集合中針對所需精確信息對實體進行排序的學習方法的發展。在某些情況下,學習排序函數可以簡化為對示例對進行分類函數的學習。本書證明了這一任務可以在一個新的框架中高效解決:依賴數據的學習。

機器學習的研究人員和專業人士將會發現這些新的視角和解決方案非常有價值。《學習部分標記和依賴數據(Learning with Partially Labeled and Interdependent Data)》對於計算機科學的高級學生,特別是那些專注於統計和學習的學生,也非常有用。

最後瀏覽商品 (20)