-
出版商:
Summit Valley Press
-
出版日期:
2022-08-23
-
售價:
$2,710
-
貴賓價:
9.5 折
$2,575
-
語言:
英文
-
頁數:
320
-
裝訂:
Hardcover - also called cloth, retail trade, or trade
-
ISBN:
0262047071
-
ISBN-13:
9780262047074
-
相關分類:
Machine Learning
商品描述
Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization. Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom.
The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation.
商品描述(中文翻譯)
弱監督分類的基本理論與實用演算法,強調基於經驗風險最小化的方法。
標準的機器學習技術需要大量的標記數據才能良好運作。然而,當我們將機器學習應用於現實世界的問題時,收集如此大量的標記數據是極其困難的。在本書中,杉山雅史(Masashi Sugiyama)、包涵(Han Bao)、石田貴志(Takashi Ishida)、陸楠(Nan Lu)、坂井智也(Tomoya Sakai)和牛剛(Gang Niu)提出了弱監督學習的理論與演算法,這是一種從弱標記數據中進行機器學習的範式。本書強調基於經驗風險最小化的方法,並借鑒弱監督學習的前沿研究,提供了該領域的基本知識以及其背後的高級數學理論。它可以作為實務工作者、研究人員及教室中的參考資料。
本書首先數學上公式化分類問題,定義常見符號,並回顧各種監督式二元及多類別分類的演算法。接著探討二元弱監督分類的問題,包括正標記-未標記(PU)分類、正標記-負標記-未標記(PNU)分類,以及未標記-未標記(UU)分類。然後轉向多類別分類,討論互補標籤(CL)分類和部分標籤(PL)分類。最後,本書處理更高級的問題,包括一系列修正方法以改善弱監督學習的泛化性能,以及類別先驗估計的問題。
作者簡介
Masashi Sugiyama is Director of the RIKEN Center for Advanced Intelligence Project and Professor of Computer Science at the University of Tokyo. Han Bao is a PhD student in the Department of Computer Science at the University of Tokyo and Research Assistant at the RIKEN Center for Advanced Intelligence Project. Takashi Ishida is a Lecturer at the University of Tokyo and Visiting Scientist at the RIKEN Center for Advanced Intelligence Project. Nan Lu is a PhD student in the Department of Complexity Science and Engineering at the University of Tokyo and Research Assistant at the RIKEN Center for Advanced Intelligence Project. Tomoya Sakai is Senior Researcher at NEC Corporation and Visiting Scientist at the RIKEN Center for Advanced Intelligence Project. Gang Niu is Research Scientist in the Imperfect Information Learning Team at the RIKEN Center for Advanced Intelligence Project.
作者簡介(中文翻譯)
杉山雅史是理化學研究所先進智慧專案中心的主任,以及東京大學的計算機科學教授。包涵是東京大學計算機科學系的博士生,並擔任理化學研究所先進智慧專案中心的研究助理。石田貴士是東京大學的講師,並擔任理化學研究所先進智慧專案中心的訪問科學家。陸楠是東京大學複雜科學與工程系的博士生,並擔任理化學研究所先進智慧專案中心的研究助理。坂井智也是NEC公司資深研究員,並擔任理化學研究所先進智慧專案中心的訪問科學家。牛剛是理化學研究所先進智慧專案中心不完美資訊學習團隊的研究科學家。