Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, IMIMIC 2020, Second International Workshop,
暫譯: 醫學影像計算的可解釋性與註解效率學習:第三屆國際研討會 IMIMIC 2020,第二屆國際研討會
Cardoso, Jaime, Van Nguyen, Hien, Heller, Nicholas
- 出版商: Springer
- 出版日期: 2020-10-04
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 292
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030611655
- ISBN-13: 9783030611651
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.
The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.
商品描述(中文翻譯)
本書是第三屆國際醫學影像計算中機器智慧可解釋性研討會(iMIMIC 2020)、第二屆醫學影像學習與少量標籤及不完美數據國際研討會(MIL3ID 2020)以及第五屆生物醫學數據大規模標註與專家標籤合成國際研討會(LABELS 2020)的經過審稿的聯合會議論文集,這些會議於2020年10月在秘魯利馬舉行,並與第23屆國際醫學影像與電腦輔助介入會議(MICCAI 2020)同時舉辦。
在iMIMIC 2020上發表的8篇完整論文、MIL3ID 2020的11篇完整論文以及LABELS 2020的10篇完整論文,均是從iMIMIC的16篇投稿、MIL3ID的28篇投稿和LABELS的12篇投稿中仔細審核和選出的。iMIMIC的論文專注於介紹與醫學影像和電腦輔助介入中機器學習系統可解釋性相關的挑戰和機會。MIL3ID則探討在標籤稀缺和數據不完美的情況下,醫學影像學習的最佳實踐。LABELS的論文則提出了多種處理有限標籤數量的方法,從半監督學習到眾包。