Practical Approaches to Causal Relationship Exploration (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 因果關係探索的實用方法(電機與計算機工程系列)

Jiuyong Li

  • 出版商: Springer
  • 出版日期: 2015-03-25
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 92
  • 裝訂: Paperback
  • ISBN: 3319144324
  • ISBN-13: 9783319144320
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for causal discovery. The last two methods employ association rule mining for efficient causal hypothesis generation, and a partial association test and retrospective cohort study for validating the hypotheses. All four methods are innovative and effective in identifying potential causal relationships around a given target, and each has its own strength and weakness. For each method, a software tool is provided along with examples demonstrating its use. Practical Approaches to Causal Relationship Exploration is designed for researchers and practitioners working in the areas of artificial intelligence, machine learning, data mining, and biomedical research. The material also benefits advanced students interested in causal relationship discovery.

商品描述(中文翻譯)

本簡報介紹了四種實用的方法,以有效探索因果關係,這些方法通常用於醫學、流行病學、生物學、經濟學、物理學和社會科學中的解釋、預測和決策。前兩種方法應用條件獨立性測試進行因果發現。最後兩種方法則利用關聯規則挖掘來高效生成因果假設,並使用部分關聯測試和回顧性隊列研究來驗證這些假設。這四種方法在識別特定目標周圍的潛在因果關係方面都具有創新性和有效性,每種方法都有其優勢和劣勢。對於每種方法,提供了一個軟體工具以及示範其使用的範例。《因果關係探索的實用方法》旨在為從事人工智慧、機器學習、資料挖掘和生物醫學研究的研究人員和實務工作者提供指導。這些材料也對有興趣於因果關係發現的高級學生有所裨益。

最後瀏覽商品 (20)