Data Preprocessing in Data Mining (Intelligent Systems Reference Library)
暫譯: 資料探勘中的數據預處理(智慧系統參考圖書館)

Salvador García, Julián Luengo, Francisco Herrera

  • 出版商: Springer
  • 出版日期: 2014-09-11
  • 售價: $8,670
  • 貴賓價: 9.5$8,237
  • 語言: 英文
  • 頁數: 320
  • 裝訂: Hardcover
  • ISBN: 331910246X
  • ISBN-13: 9783319102467
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

商品描述

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.

This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

商品描述(中文翻譯)

《資料探勘的資料前處理》探討了在知名的資料知識發現過程中最重要的議題之一。直接從來源取得的資料可能會存在不一致性、錯誤,或最重要的是,這些資料尚未準備好被考慮用於資料探勘過程。此外,近年來科學、工業和商業應用中資料量的增加,要求使用更複雜的工具來進行分析。透過資料前處理,將不可能轉變為可能,調整資料以滿足每個資料探勘演算法的輸入需求。資料前處理包括資料縮減技術,旨在降低資料的複雜性,檢測或移除資料中不相關和噪音的元素。

本書旨在回顧填補從來源獲取資料到資料探勘過程之間的任務。從實務的角度提供全面的觀察,包括基本概念和對專業文獻中提出的技術的調查。每一章都是針對特定資料前處理主題的獨立指南,涵蓋從基本概念和經典演算法的詳細描述,到對近期發展的全面目錄的探討。深入的技術描述使本書適合資料科學、計算機科學和工程領域的技術專業人士、研究人員、高年級本科生和研究生。