Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges (Lecture Notes in Computer Science)
暫譯: 生物醫學資訊中的互動知識發現與資料探勘:最新技術與未來挑戰(計算機科學講義)

  • 出版商: Springer
  • 出版日期: 2014-06-26
  • 售價: $2,470
  • 貴賓價: 9.5$2,347
  • 語言: 英文
  • 頁數: 380
  • 裝訂: Paperback
  • ISBN: 3662439670
  • ISBN-13: 9783662439678
  • 相關分類: Computer-ScienceData-mining
  • 海外代購書籍(需單獨結帳)

商品描述

One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of <= 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning.

This state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.

商品描述(中文翻譯)

在我們的數位世界中,一個重大挑戰是大型、複雜且通常結構不明確的數據集,以及大量的非結構化信息。這個「大數據」挑戰在生物醫學資訊學中最為明顯:精準醫療的趨勢導致生物醫學數據集的生成量激增。儘管人類專家在維度小於等於3的模式識別方面表現出色,但大多數數據都是高維的,這使得手動分析往往變得不可能,無論是醫生還是生物醫學研究人員都無法記住所有這些事實。兩個領域的方法論和方法的協同組合為解決這些問題提供了理想的條件:人機互動(Human–Computer Interaction, HCI)和知識發現/數據挖掘(Knowledge Discovery/Data Mining, KDD),其目標是通過機器學習來支持人類的能力。

這份最先進的調查報告是HCI-KDD專家網絡的產出,包含19篇精心挑選和審核的論文,涉及七個熱門且有前景的研究領域:領域1:數據整合、數據預處理和數據映射;領域2:數據挖掘算法;領域3:基於圖的數據挖掘;領域4:基於熵的數據挖掘;領域5:拓撲數據挖掘;領域6:數據可視化;領域7:隱私、數據保護、安全性和保障。