Information-Theoretic Evaluation for Computational Biomedical Ontologies (SpringerBriefs in Computer Science)
暫譯: 計算生物醫學本體的資訊理論評估 (SpringerBriefs in Computer Science)
Wyatt Travis Clark
- 出版商: Springer
- 出版日期: 2014-01-23
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 46
- 裝訂: Paperback
- ISBN: 3319041371
- ISBN-13: 9783319041377
-
相關分類:
Computer-Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an information-theoretic framework to evaluate the performance of computational protein function prediction. A Bayesian network is used, structured according to the underlying ontology, to model the prior probability of a protein's function. The concepts of misinformation and remaining uncertainty are then defined, that can be seen as analogs of precision and recall. Finally, semantic distance is proposed as a single statistic for ranking classification models. The approach is evaluated by analyzing three protein function predictors of gene ontology terms. The work addresses several weaknesses of current metrics, and provides valuable insights into the performance of protein function prediction tools.
商品描述(中文翻譯)
有效預測本體註解的方法開發是計算生物學中的一個重要目標,但由於生物醫學本體的結構和基因註解的不完整性,評估其性能變得困難。本研究提出了一個信息理論框架來評估計算蛋白質功能預測的性能。使用貝葉斯網絡,根據底層本體結構來建模蛋白質功能的先驗概率。然後定義了錯誤信息和剩餘不確定性的概念,這可以被視為精確度(precision)和召回率(recall)的類比。最後,提出語義距離作為對分類模型進行排名的單一統計量。通過分析三個基因本體術語的蛋白質功能預測器來評估該方法。本研究解決了當前指標的幾個弱點,並提供了對蛋白質功能預測工具性能的寶貴見解。