Machine Learning in Finance: Trends, Developments and Business Practices in the Financial Sector
暫譯: 金融領域的機器學習:趨勢、發展與商業實踐

Gün, Musa, Kartal, Burcu

  • 出版商: Springer
  • 出版日期: 2025-03-30
  • 售價: $6,440
  • 貴賓價: 9.5$6,118
  • 語言: 英文
  • 頁數: 199
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031832655
  • ISBN-13: 9783031832659
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

This book discusses the evolution of technical features in decentralized finance and focuses on machine-learning finance in emerging economies. As technological advancement evolves at an unpredictable pace, the financial industry, like every other sector, must adapt accordingly. Furthermore, the rapid expansion of diverse financial products and services is creating new applications and markets. Alongside technological progress, the exploration of complex patterns in vast amounts of data, known as big data, is facilitated by its commonly acknowledged characteristics: volume, variety, veracity, value, and velocity.

Overall, machine learning has become crucial in the financial industry, allowing businesses to automate operations, gain insights from data, and make more informed decisions in real time. This edited book covers algorithmic trading, risk management, fraud detection, customer service and personalization, portfolio management, credit scoring, sentiment analysis, and algorithmic pricing. The book connects theoretical concepts with practical real-world applications, benefiting professionals looking to enhance their proficiency in using these methods efficiently. It offers insightful guidance for theorists, market participants, and policymakers by exploring financial theories and practices in light of contemporary machine-learning approaches, with a special emphasis on emerging economies.

商品描述(中文翻譯)

這本書探討了去中心化金融中技術特徵的演變,並專注於新興經濟體中的機器學習金融。隨著技術進步以不可預測的速度發展,金融行業與其他行業一樣,必須相應地適應。此外,各種金融產品和服務的快速擴展正在創造新的應用和市場。伴隨著技術進步,對於大量數據中複雜模式的探索,即所謂的大數據,得益於其普遍認可的特徵:體量、種類、真實性、價值和速度。

總體而言,機器學習在金融行業中變得至關重要,使企業能夠自動化操作、從數據中獲取見解,並實時做出更明智的決策。本書涵蓋了算法交易、風險管理、欺詐檢測、客戶服務與個性化、投資組合管理、信用評分、情感分析和算法定價。這本編輯書籍將理論概念與實際應用相連接,對於希望提高這些方法有效使用能力的專業人士來說,具有很大的幫助。通過探討金融理論和實踐,並結合當代機器學習方法,特別強調新興經濟體,為理論家、市場參與者和政策制定者提供了深刻的指導。

作者簡介

Musa Gün is Associate Professor for Finance at the Recep Tayyip Erdoğan University in Rize (Türkiye). His research focuses on asset pricing models, market anomalies, credit risk management, investment valuations, and financial technologies.

Burcu Kartal is Assistant Professor in the Department of Quantitative Methods at the Recep Tayyip Erdoğan University in Rize (Türkiye). Her research interests include data mining, machine learning, text mining, qualitative methods, and metaheuristics.

作者簡介(中文翻譯)

穆薩·君(Musa Gün)是土耳其里澤的雷傑普·塔伊普·埃爾多安大學(Recep Tayyip Erdoğan University)金融學副教授。他的研究專注於資產定價模型、市場異常、信用風險管理、投資評估以及金融科技。

布爾庫·卡塔爾(Burcu Kartal)是土耳其里澤的雷傑普·塔伊普·埃爾多安大學(Recep Tayyip Erdoğan University)定量方法系的助理教授。她的研究興趣包括資料探勘、機器學習、文本探勘、定性方法以及元啟發式演算法。

最後瀏覽商品 (20)