Modern Statistics: A Computer-Based Approach with Python
暫譯: 現代統計學:基於 Python 的電腦化方法

Kenett, Ron S., Zacks, Shelemyahu, Gedeck, Peter

  • 出版商: Birkhauser
  • 出版日期: 2023-09-22
  • 售價: $3,580
  • 貴賓價: 9.8$3,508
  • 語言: 英文
  • 頁數: 438
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031075684
  • ISBN-13: 9783031075681
  • 相關分類: Python程式語言機率統計學 Probability-and-statistics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others.
The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.
Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included.
A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses.
The mistat Python package can be accessed at https: //gedeck.github.io/mistat-code-solutions/ModernStatistics/
"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."
Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)

商品描述(中文翻譯)

這本創新的教科書提供了一門現代統計課程的教材,並將 Python 作為教學和實用資源。作者基於多年在各種應用和工業環境中教學和進行研究的經驗,精心調整文本,以提供理論與實踐應用之間的理想平衡。書中融入了大量的範例和案例研究,並詳細說明了全面的 Python 應用。學生可以下載一個自訂的 Python 套件,以重現這些範例並探索其他範例。

文本的前幾章專注於分析變異性、機率模型和分佈函數。接下來,作者介紹了統計推斷和自助法,以及多維度的變異性和迴歸模型。然後,文本涵蓋了有限母體數量的估計抽樣和時間序列分析與預測,最後以兩章現代數據分析方法作結。每一章都包含練習、數據集和應用,以補充學習。

《現代統計:基於計算機的 Python 方法》旨在用於一或兩學期的高級本科或研究生課程。由於文本的基礎性質,它可以與任何需要數據分析的課程結合使用,例如數據科學、工業統計、物理和社會科學以及工程課程。研究人員、實務工作者和數據科學家也會發現這本書是有用的資源,因為其中包含了許多應用和案例研究。

第二本密切相關的教科書名為《工業統計:基於計算機的 Python 方法》。它涵蓋了統計過程控制的主題,包括多變量方法、實驗設計,包括計算機實驗和可靠性方法,包括貝葉斯可靠性。這些文本可以獨立使用或用於連續課程。

mistat Python 套件可以在 https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ 獲取。

「在這本關於《現代統計》的書中,最後兩章關於現代分析方法的內容包含了目前非常流行的主題,特別是在機器學習中,例如分類器、聚類方法和文本分析。但我也很欣賞之前的章節,因為我相信使用機器學習方法的人應該意識到它們在很大程度上依賴於統計方法。我非常感謝作者基於長期經驗所提供的許多具體案例。這些案例對於更好地理解和應用書中所介紹的方法非常有用。使用 Python 符合當今最佳的編程體驗。基於這些原因,我認為這本書也有著光輝而深遠的未來,我對作者表示讚賞。」
教授 Fabrizio Ruggeri
意大利國家研究委員會研究主任
國際商業與工業統計學會(ISBIS)會長
《應用隨機模型在商業與工業中的應用》(ASMBI)主編

作者簡介

Professor Ron Kenett is Chairman of the KPA Group, Israel and Senior Research Fellow at the Samuel Neaman Institute, Technion, Haifa Israel and Professor, University of Turin, Italy. He is an applied statistician combining expertise in academic, consulting and business domains.
Shelemyahu Zacks is a Distinguished Professor emeritus in the Mathematical Sciences department of Binghamton University.He is a Fellow of the IMS, ASA, AAAS and an elected member of the ISI. Professor Zacks has published eleven books and more than 170 journal articles on subjects of design of experiments, statistical process control, statistical decision theory, sequential analysis, reliability and sampling from finite populations. Professor Zacks served as an Editor and Associate Editor of several Statistics and Probability journals.
Dr. Peter Gedeck, a Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. In addition, he teaches data science at the University of Virginia and at statistics.com.

作者簡介(中文翻譯)

羅恩·肯內特教授是以色列KPA集團的主席,並且是以色列海法理工學院薩繆爾·尼曼研究所的高級研究員,以及意大利都靈大學的教授。他是一位應用統計學家,結合了學術、諮詢和商業領域的專業知識。

謝勒米亞胡·扎克斯是賓漢頓大學數學科學系的榮譽特聘教授。他是IMS、ASA、AAAS的會士,並且是ISI的當選成員。扎克斯教授已出版十一本書籍和超過170篇期刊文章,主題涵蓋實驗設計、統計過程控制、統計決策理論、序列分析、可靠性及有限母體抽樣。扎克斯教授曾擔任多本統計與機率期刊的編輯和副編輯。

彼得·蓋德克博士是Collaborative Drug Discovery的高級數據科學家,專注於開發機器學習算法以預測藥物候選者的生物和物理化學性質。此外,他還在維吉尼亞大學和statistics.com教授數據科學。