Synthetic Data for Deep Learning
暫譯: 深度學習的合成數據
Nikolenko, Sergey I.
- 出版商: Springer
- 出版日期: 2021-06-27
- 售價: $6,780
- 貴賓價: 9.5 折 $6,441
- 語言: 英文
- 頁數: 348
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030751775
- ISBN-13: 9783030751777
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field.
In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs.
The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.
商品描述(中文翻譯)
這是第一本關於深度學習合成數據的書籍,其涵蓋範圍可能使這本書在未來幾年內成為合成數據的默認參考書。這本書也可以作為幾個其他重要的機器學習子領域的入門,這些子領域在其他書籍中鮮少被提及。機器學習作為一個學科,若沒有優化的內部運作將無法實現。這本書包含了優化所需的基本知識,雖然討論的重點集中在訓練深度學習模型的日益流行的工具——合成數據上。預計合成數據領域在不久的將來將經歷指數增長。這本書作為該領域的綜合調查。
在最簡單的情況下,合成數據指的是用於訓練計算機視覺模型的計算機生成圖形。合成數據還有許多其他方面需要考慮。在基本計算機視覺的部分,這本書討論了基本的計算機視覺問題,包括低階(例如,光流估計)和高階(例如,物體檢測和語義分割)、戶外和城市場景(自動駕駛)的合成環境和數據集、室內場景(室內導航)、空中導航以及機器人模擬環境。此外,它還觸及了合成數據在計算機視覺以外的應用(如神經編程、生物信息學、自然語言處理等)。它還調查了改善合成數據開發的工作以及生成合成數據的替代方法,例如生成對抗網絡(GAN)。
這本書介紹並回顧了在各個機器學習領域中對合成數據的幾種不同方法,特別是以下領域:領域適應以使合成數據更具真實感和/或調整模型以在合成數據上進行訓練,以及差分隱私以生成具有隱私保證的合成數據。這一討論伴隨著對生成對抗網絡(GAN)和差分隱私的介紹。
作者簡介
Sergey I. Nikolenko is a computer scientist specializing in machine learning and analysis of algorithms. He is the Head of AI at Synthesis AI, a San Francisco based company specializing on the generation and use of synthetic data for modern machine learning models, and also serves as the Head of the Artificial Intelligence Lab at the Steklov Mathematical Institute at St. Petersburg, Russia. Dr. Nikolenko's interests include synthetic data in machine learning, deep learning models for natural language processing, image manipulation, and computer vision, and algorithms for networking. His previous research includes works on cryptography, theoretical computer science, and algebra.
作者簡介(中文翻譯)
謝爾蓋·I·尼科連科是一位專注於機器學習和算法分析的計算機科學家。他是位於舊金山的 Synthesis AI 公司的人工智慧部門負責人,該公司專注於為現代機器學習模型生成和使用合成數據,同時也擔任俄羅斯聖彼得堡斯捷克洛夫數學研究所人工智慧實驗室的負責人。尼科連科博士的研究興趣包括機器學習中的合成數據、用於自然語言處理的深度學習模型、圖像處理和計算機視覺,以及網絡算法。他之前的研究包括密碼學、理論計算機科學和代數方面的工作。