Practical Convolutional Neural Network Models: Enhance deep learning skills by building intelligent ConvNet models using Keras
暫譯: 實用的卷積神經網絡模型:透過使用 Keras 建立智能 ConvNet 模型來提升深度學習技能

Mohit Sewak, Md. Rezaul Karim, Pradeep Pujari

買這商品的人也買了...

商品描述

One stop guide to practice ConvNets models from most common to recent advances in artificial intelligence field

Key Features

  • Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques
  • Learn best practices to get the most out of the book to implement CNN models on image recognition, object classification, transfer learning, GAN and more
  • Develop your skills by in-depth understanding of advanced CNN architectures such as AlexNet, VGG, GoogLeNet and more and apply them to real-world research field

Book Description

Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, speech recognition and more. These advances create unprecedented opportunities and challenges to build and deploy large-scale ConvNet applications. This book aims to take you through the building blocks of CNN's, best practices for implementing CNN models and how they can be applied to solve complex machine learning problems.

This book starts with an overview of deep neural networks with the example of image classification and walks you through building your first CNN for human face detector. As you progress further you'll come across practical illustrations of CNN internals with interesting examples to understand different optimization and visualization techniques to build a robust model. While explaining CNN architecture, this book covers case studies of most common and award-winning CNN architectures.

Furthermore, this book examines how knowledge transfer can be achieved to train a CNN model that does need a lot of data. You will be introduced to the concept of transfer learning that helps to improve the performance of a CNN model besides training data needs. Towards the end, this book also touches upon the subject on the attention-based CNN with an example of visual question answering application. Finally, this book covers details of generative models and a novel application - getting started with generating your own hand-written MNIST digits.

By the end of this book, you will be all ready to implement CNN models in your work or projects by working with extreme datasets.

What you will learn

  • From CNN basics building blocks to advanced concepts understand the practical areas they can be applied to.
  • Build a simple image classifier CNN model to understand how different components interact with each other.
  • Learn CNN Model Optimization and Visualization techniques
  • Implement award-winning CNN Architectures like AlexNet, VGG, GoogLeNet, ResNet etc
  • Practical approach to use pre-trained models and examples to understand transfer learning methodology.
  • Understand the difference between GAN generators and discriminators.
  • Step into the world of Artificial intelligence with adversarial training and applications of GANs

Who This Book Is For

This book is for data scientists, machine learning practitioners, deep learning and AI enthusiasts who want to move one step further in building convolutional neural network models. Get your hands on extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of machine learning and CNN is expected.

商品描述(中文翻譯)

從最常見到最近的人工智慧領域進展,實踐 ConvNets 模型的一站式指南

主要特點


  • 快速指南,包含使用案例和實際範例,幫助熟悉 CNN 技術

  • 學習最佳實踐,充分利用本書來實現圖像識別、物體分類、遷移學習、GAN 等的 CNN 模型

  • 通過深入理解先進的 CNN 架構,如 AlexNet、VGG、GoogLeNet 等,來發展您的技能,並將其應用於實際研究領域

書籍描述

卷積神經網絡(CNN)正在革新多個應用領域,如視覺識別系統、自駕車、語音識別等。這些進展為構建和部署大規模 ConvNet 應用程序創造了前所未有的機會和挑戰。本書旨在帶您了解 CNN 的基本構建塊、實現 CNN 模型的最佳實踐,以及如何應用它們來解決複雜的機器學習問題。

本書首先概述深度神經網絡,並以圖像分類為例,帶您構建第一個人臉檢測器 CNN。隨著進一步的學習,您將遇到 CNN 內部的實用示例,並通過有趣的範例了解不同的優化和可視化技術,以構建穩健的模型。在解釋 CNN 架構時,本書涵蓋了最常見和獲獎的 CNN 架構的案例研究。

此外,本書還探討了如何實現知識轉移,以訓練不需要大量數據的 CNN 模型。您將了解遷移學習的概念,這有助於改善 CNN 模型的性能,除了訓練數據的需求。最後,本書還觸及基於注意力的 CNN 主題,並以視覺問答應用為例進行說明。最後,本書詳細介紹了生成模型及一個新穎的應用——開始生成您自己的手寫 MNIST 數字。

在本書結束時,您將準備好在工作或項目中實現 CNN 模型,並處理極端數據集。

您將學到什麼


  • 從 CNN 基礎構建塊到高級概念,了解它們可以應用的實際領域。

  • 構建一個簡單的圖像分類器 CNN 模型,以了解不同組件之間的互動。

  • 學習 CNN 模型優化和可視化技術

  • 實現獲獎的 CNN 架構,如 AlexNet、VGG、GoogLeNet、ResNet 等

  • 實用方法使用預訓練模型和範例,了解遷移學習方法論。

  • 了解 GAN 生成器和判別器之間的區別。

  • 進入人工智慧的世界,了解對抗訓練和 GAN 的應用

本書適合誰

本書適合數據科學家、機器學習從業者、深度學習和 AI 愛好者,想在構建卷積神經網絡模型方面更進一步的人。掌握極端數據集和不同的 CNN 架構,以構建高效且智能的 ConvNet 模型。預期具備基本的機器學習和 CNN 知識。