Synthetic Data for Machine Learning: Revolutionize your approach to machine learning with this comprehensive conceptual guide
暫譯: 機器學習的合成數據:徹底改變您對機器學習的理解,這本全面的概念指南

Kerim, Abdulrahman

  • 出版商: Packt Publishing
  • 出版日期: 2023-10-27
  • 售價: $2,050
  • 貴賓價: 9.5$1,948
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803245409
  • ISBN-13: 9781803245409
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studies


Key Features:


  • Avoid common data issues by identifying and solving them using synthetic data-based solutions
  • Master synthetic data generation approaches to prepare for the future of machine learning
  • Enhance performance, reduce budget, and stand out from competitors using synthetic data
  • Purchase of the print or Kindle book includes a free PDF eBook


Book Description:


The machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges.


This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You'll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you'll uncover the secrets and best practices to harness the full potential of synthetic data.


By the end of this book, you'll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.


What You Will Learn:


  • Understand real data problems, limitations, drawbacks, and pitfalls
  • Harness the potential of synthetic data for data-hungry ML models
  • Discover state-of-the-art synthetic data generation approaches and solutions
  • Uncover synthetic data potential by working on diverse case studies
  • Understand synthetic data challenges and emerging research topics
  • Apply synthetic data to your ML projects successfully


Who this book is for:



If you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers.

商品描述(中文翻譯)

克服數據障礙,提升您的機器學習之旅,並通過合成數據生成技術、最佳實踐和案例研究成為您領域的領導者


主要特點:



  • 通過識別和解決常見數據問題,避免使用合成數據解決方案所帶來的困擾

  • 掌握合成數據生成方法,為機器學習的未來做好準備

  • 利用合成數據提升性能、降低預算,並在競爭中脫穎而出

  • 購買印刷版或 Kindle 版書籍可獲得免費 PDF 電子書


書籍描述:


機器學習(ML)革命使我們的世界無法想像沒有其產品和服務。然而,訓練 ML 模型需要龐大的數據集,這一過程伴隨著高成本、錯誤以及與收集和標註真實數據相關的隱私問題。合成數據作為解決這些挑戰的有前景的解決方案而出現。

本書旨在橋接合成數據的理論與實踐,為您的 ML 之旅提供寶貴的支持。《機器學習的合成數據》使您能夠應對真實數據問題,提升 ML 模型的性能,並深入了解合成數據生成。您將探索各種方法的優缺點,通過現代方法的實踐範例獲得實用知識,包括生成對抗網絡(GANs)和擴散模型。此外,您還將揭示充分利用合成數據的秘密和最佳實踐。

在本書結束時,您將掌握合成數據,並將自己定位為市場領導者,為更高級、具成本效益和更高質量的數據來源做好準備,使您在下一代 ML 中領先於同行。


您將學到什麼:



  • 了解真實數據問題、限制、缺點和陷阱

  • 利用合成數據的潛力來滿足數據需求高的 ML 模型

  • 發現最先進的合成數據生成方法和解決方案

  • 通過多樣的案例研究揭示合成數據的潛力

  • 理解合成數據的挑戰和新興研究主題

  • 成功將合成數據應用於您的 ML 項目


本書適合誰:


如果您是希望克服數據問題的機器學習(ML)從業者或研究者,本書適合您。需要具備基本的 ML 和 Python 編程知識。本書是該主題的先驅作品之一,為 ML 工程師、研究者、公司和決策者提供前沿支持。