Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval
暫譯: 影像資料挖掘基礎:分析、特徵、分類與檢索

Zhang, Dengsheng

  • 出版商: Springer
  • 出版日期: 2021-06-26
  • 售價: $3,180
  • 貴賓價: 9.5$3,021
  • 語言: 英文
  • 頁數: 363
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030692507
  • ISBN-13: 9783030692506
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

商品描述

This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments.

Topics and features:

  • Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms
  • Develops many new exercises (most with MATLAB code and instructions)
  • Includes review summaries at the end of each chapter
  • Analyses state-of-the-art models, algorithms, and procedures for image mining
  • Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing
  • Demonstrates how features like color, texture, and shape can be mined or extracted for image representation
  • Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees
  • Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization

This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.

商品描述(中文翻譯)

這本獨特且實用的教科書全面回顧了影像資料挖掘的基本要素,以及該領域最新的尖端技術。內容涵蓋影像分析和理解的各個方面,深入探討特徵提取、機器學習和影像檢索等領域。理論部分由實用的數學模型和演算法支持,利用來自真實世界範例和實驗的數據。

**主題與特色:**
- 描述影像挖掘的基本工具,包括傅立葉變換、Gabor 濾波器和當代小波變換
- 開發了**許多新的練習**(大多數附有 MATLAB 代碼和說明)
- 每章結尾包含回顧摘要
- 分析影像挖掘的最先進模型、演算法和程序
- 整合**新章節**,涵蓋預處理、離散餘弦變換以及統計推斷和檢驗
- 演示如何提取顏色、紋理和形狀等特徵以進行影像表示
- 應用強大的分類方法:貝葉斯分類、支持向量機、神經網絡和決策樹
- 實現影像技術以進行索引、排名和展示,以及資料庫可視化

這本易於理解的獲獎書籍闡明了基本和高級數學概念如何應用於解決計算機科學學生和研究人員所遇到的各種影像資料挖掘問題。數學及其他科學學科的學生也將從書中描述的應用和解決方案中受益,並透過實作練習獲得第一手的計算經驗。

作者簡介

Dr. Dengsheng Zhang is Senior Lecturer in the School of Engineering, Information Technology and Physical Sciences at Federation University Australia and a Guest Professor of Xi'an University of Posts & Telecommunications, China. He is on the list of Top 2% Scientists in the World ranked by Stanford University. Dr Zhang was the Textbook & Academic Authors Association's winner of their 2020 Most Promising New Textbook Award, with the judges noting:

"Fundamentals of Image Data Mining provides excellent coverage of current algorithms and techniques in image analysis. It does this using a progression of essential and novel image processing tools that give students an in-depth understanding of how the tools fit together and how to apply them to problems."

作者簡介(中文翻譯)

張登生博士是澳大利亞聯邦大學工程、資訊科技與物理科學學院的高級講師,同時也是中國西安郵電大學的客座教授。他被史丹佛大學列入全球前2%科學家名單。張博士曾獲得2020年教科書與學術作者協會的最具潛力新教科書獎,評審指出:

'影像數據挖掘基礎對當前影像分析中的算法和技術提供了出色的覆蓋。它通過一系列基本且新穎的影像處理工具,使學生深入理解這些工具如何相互配合以及如何將其應用於問題中。'