Data Mining and Analysis: Fundamental Concepts and Algorithms
暫譯: 資料探勘與分析:基本概念與演算法
Mohammed J. Zaki, Wagner Meira Jr
- 出版商: Cambridge
- 出版日期: 2014-05-12
- 售價: $2,830
- 貴賓價: 9.5 折 $2,689
- 語言: 英文
- 頁數: 562
- 裝訂: Hardcover
- ISBN: 0521766338
- ISBN-13: 9780521766333
-
相關分類:
Algorithms-data-structures、Data-mining
-
相關翻譯:
數據挖掘與分析 : 概念與算法 (Data Mining and Analysis: Fundamental Concepts and Algorithms) (簡中版)
-
其他版本:
Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2/e (Hardcover)
買這商品的人也買了...
商品描述
The fundamental algorithms in data mining and analysis form the basis for the emerging field of data science, which includes automated methods to analyze patterns and models for all kinds of data, with applications ranging from scientific discovery to business intelligence and analytics. This textbook for senior undergraduate and graduate data mining courses provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include exploratory data analysis, pattern mining, clustering, and classification. The book lays the basic foundations of these tasks, and also covers cutting-edge topics such as kernel methods, high-dimensional data analysis, and complex graphs and networks. With its comprehensive coverage, algorithmic perspective, and wealth of examples, this book offers solid guidance in data mining for students, researchers, and practitioners alike. Key features: • Covers both core methods and cutting-edge research • Algorithmic approach with open-source implementations • Minimal prerequisites: all key mathematical concepts are presented, as is the intuition behind the formulas • Short, self-contained chapters with class-tested examples and exercises allow for flexibility in designing a course and for easy reference • Supplementary website with lecture slides, videos, project ideas, and more
商品描述(中文翻譯)
資料探勘與分析中的基本演算法構成了新興的資料科學領域的基礎,該領域包括自動化方法來分析各種資料的模式和模型,應用範圍從科學發現到商業智慧和分析。本教科書適用於高年級本科生和研究生的資料探勘課程,提供了廣泛而深入的資料探勘概述,整合了機器學習和統計學的相關概念。書中的主要部分包括探索性資料分析、模式探勘、聚類和分類。該書奠定了這些任務的基本基礎,並涵蓋了前沿主題,如核方法、高維資料分析以及複雜圖形和網絡。憑藉其全面的涵蓋範圍、演算法視角和豐富的範例,本書為學生、研究人員和實務工作者提供了堅實的資料探勘指導。主要特點包括:
- 涵蓋核心方法和前沿研究
- 演算法方法,並提供開源實作
- 最小的先備知識:所有關鍵數學概念均有介紹,並解釋公式背後的直覺
- 短小且自成一體的章節,配有經過課堂測試的範例和練習,便於課程設計和快速參考
- 補充網站提供講義、影片、專案想法等資源