Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval
暫譯: 影像資料挖掘基礎:分析、特徵、分類與檢索

Zhang, Dengsheng

  • 出版商: Springer
  • 出版日期: 2019-05-24
  • 售價: $3,010
  • 貴賓價: 9.5$2,860
  • 語言: 英文
  • 頁數: 314
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030179885
  • ISBN-13: 9783030179885
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

商品描述

This reader-friendly textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments.

Topics and features: describes the essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms; reviews a varied range of state-of-the-art models, algorithms, and procedures for image mining; emphasizes how to deal with real image data for practical image mining; highlights how such features as color, texture, and shape can be mined or extracted from images for image representation; presents four powerful approaches for classifying image data, namely, Bayesian classification, Support Vector Machines, Neural Networks, and Decision Trees; discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods; provides self-test exercises with instructions or Matlab code, as well as review summaries at the end of each chapter.

This easy-to-follow work illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.

商品描述(中文翻譯)

這本易於閱讀的教科書全面回顧了影像資料挖掘的基本要素,以及該領域最新的尖端技術。內容涵蓋影像分析和理解的各個方面,深入探討特徵提取、機器學習和影像檢索等領域。理論部分由實用的數學模型和演算法支持,利用來自真實世界範例和實驗的數據。

主題和特點:描述影像挖掘的基本工具,包括傅立葉變換、Gabor 濾波器和當代小波變換;回顧各種最先進的模型、演算法和影像挖掘程序;強調如何處理真實影像數據以進行實際的影像挖掘;突顯顏色、紋理和形狀等特徵如何從影像中挖掘或提取以進行影像表示;提出四種強大的影像數據分類方法,即貝葉斯分類、支持向量機、神經網絡和決策樹;討論索引、影像排名和影像呈現的技術,以及影像資料庫可視化方法;提供自我測試練習,附有指導或 Matlab 代碼,以及每章結尾的回顧摘要。

這本易於跟隨的著作闡明了基礎和高級數學的概念如何應用於解決計算機科學學生和研究人員所遇到的各種影像資料挖掘問題。數學及其他科學學科的學生也將從文本中描述的應用和解決方案中受益,並通過實作練習獲得第一手的計算經驗。

作者簡介

Dr. Dengsheng Zhang is a Senior Lecturer in the School of Science, Engineering and Information Technology at Federation University Australia.

作者簡介(中文翻譯)

張登生博士是澳大利亞聯邦大學科學、工程與資訊技術學院的高級講師。