Domination Games Played on Graphs
暫譯: 在圖上進行的支配遊戲
Bresar, Bostjan, Henning, Michael A., Klavzar, Sandi
- 出版商: Springer
- 出版日期: 2021-04-16
- 售價: $2,990
- 貴賓價: 9.5 折 $2,841
- 語言: 英文
- 頁數: 122
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030690865
- ISBN-13: 9783030690861
海外代購書籍(需單獨結帳)
商品描述
This concise monograph present the complete history of the domination game and its variants up to the most recent developments and will stimulate research on closely related topics, establishing a key reference for future developments. The crux of the discussion surrounds new methods and ideas that were developed within the theory, led by the imagination strategy, the Continuation Principle, and the discharging method of Bujt s, to prove results about domination game invariants. A toolbox of proof techniques is provided for the reader to obtain results on the domination game and its variants. Powerful proof methods such as the imagination strategy are presented. The Continuation Principle is developed, which provides a much-used monotonicity property of the game domination number. In addition, the reader is exposed to the discharging method of Bujt s. The power of this method was shown by improving the known upper bound, in terms of a graph's order, on the (ordinary) domination number of graphs with minimum degree between 5 and 50. The book is intended primarily for students in graph theory as well as established graph theorists and it can be enjoyed by anyone with a modicum of mathematical maturity.
The authors include exact results for several families of graphs, present what is known about the domination game played on subgraphs and trees, and provide the reader with the computational complexity aspects of domination games. Versions of the games which involve only the "slow" player yield the Grundy domination numbers, which connect the topic of the book with some concepts from linear algebra such as zero-forcing sets and minimum rank. More than a dozen other related games on graphs and hypergraphs are presented in the book. In all these games there are problems waiting to be solved, so the area is rich for further research.
The domination game belongs to the growing family of competitive optimization graph games. The game is played by two competitors who take turns adding a vertex to a set of chosen vertices. They collaboratively produce a special structure in the underlying host graph, namely a dominating set. The two players have complementary goals: one seeks to minimize the size of the chosen set while the other player tries to make it as large as possible. The game is not one that is either won or lost. Instead, if both players employ an optimal strategy that is consistent with their goals, the cardinality of the chosen set is a graphical invariant, called the game domination number of the graph. To demonstrate that this is indeed a graphical invariant, the game tree of a domination game played on a graph is presented for the first time in the literature.
商品描述(中文翻譯)
這本簡明的專著呈現了支配遊戲及其變體的完整歷史,涵蓋了最新的發展,並將刺激相關主題的研究,為未來的發展建立一個關鍵參考。討論的核心圍繞著在理論中發展的新方法和想法,這些方法由想像策略、延續原則以及Bujt s的排放方法主導,以證明有關支配遊戲不變量的結果。書中提供了一套證明技術的工具箱,供讀者獲得有關支配遊戲及其變體的結果。強大的證明方法,如想像策略,得到了介紹。延續原則的發展提供了遊戲支配數的一個常用單調性特性。此外,讀者還接觸到Bujt s的排放方法。這種方法的威力通過改善已知的上界得以顯示,該上界是基於圖的階數,針對最小度數在5到50之間的圖的(普通)支配數。這本書主要針對圖論的學生以及已建立的圖論學者,任何具備一定數學成熟度的人都能享受這本書。
作者為幾個圖的家族提供了精確的結果,介紹了在子圖和樹上進行的支配遊戲的已知情況,並提供了支配遊戲的計算複雜性方面的內容。僅涉及“慢”玩家的遊戲版本產生了Grundy支配數,這將本書的主題與線性代數中的一些概念(如零強迫集和最小秩)聯繫起來。書中還介紹了十多種其他與圖和超圖相關的遊戲。在所有這些遊戲中,都有待解決的問題,因此這一領域對進一步研究來說是豐富的。
支配遊戲屬於不斷增長的競爭優化圖遊戲家族。該遊戲由兩名競爭者進行,他們輪流將一個頂點添加到選定頂點的集合中。他們共同在基礎主圖中產生一個特殊結構,即支配集。兩名玩家的目標互補:一方尋求最小化所選集合的大小,而另一方則試圖使其盡可能大。這個遊戲不是贏或輸的遊戲。相反,如果兩名玩家都採用與其目標一致的最佳策略,則所選集合的基數是一個圖形不變量,稱為圖的遊戲支配數。為了證明這確實是一個圖形不變量,文獻中首次呈現了在圖上進行的支配遊戲的遊戲樹。
作者簡介
作者簡介(中文翻譯)
邁克爾·A·亨寧將其研究興趣大部分投入於圖論中的支配理論領域。他曾在多個國際會議上擔任全體會議和受邀演講者,是一位多產的研究者,迄今已在國際數學期刊上發表超過460篇論文。亨寧出生並在南非接受教育,於1989年4月在納塔爾大學獲得博士學位。1989年1月,他開始在祖魯蘭大學擔任講師,並於1991年1月接受納塔爾大學的數學講師職位。2000年1月,他被任命為納塔爾大學的正教授,該大學於2004年1月與德班-韋斯維爾大學合併,形成夸祖魯-納塔爾大學。在夸祖魯-納塔爾大學及其前身納塔爾大學工作了近20年後,邁克爾於2010年5月轉至約翰尼斯堡大學擔任研究教授。他共同撰寫了施普林格數學簡報《從支配到著色:斯蒂芬·T·赫德尼米的圖論》,並共同撰寫了施普林格數學專著《圖中的完全支配》,在2020年,他共同撰寫了施普林格的數學發展書籍《線性均勻超圖中的橫截面》。