Kernel Adaptive Filtering: A Comprehensive Introduction (Hardcover)
暫譯: 核適應濾波:全面介紹 (精裝版)
Weifeng Liu, Jose C. Principe, Simon Haykin
- 出版商: Wiley
- 出版日期: 2010-03-01
- 售價: $4,710
- 貴賓價: 9.5 折 $4,475
- 語言: 英文
- 頁數: 240
- 裝訂: Hardcover
- ISBN: 0470447532
- ISBN-13: 9780470447536
海外代購書籍(需單獨結帳)
商品描述
There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.
-
Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm
-
Presents a powerful model-selection method called maximum marginal likelihood
-
Addresses the principal bottleneck of kernel adaptive filters—their growing structure
-
Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site
-
Concludes each chapter with a summary of the state of the art and potential future directions for original research
Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
商品描述(中文翻譯)
從信號處理的角度看線上學習
隨著對神經網絡中的核學習算法的興趣增加,以及在先進信號處理、通信和控制中對非線性自適應算法的需求日益增長,核自適應濾波 是第一本全面且統一地介紹在重現核希爾伯特空間中的線上學習算法的書籍。這本獨特的資源基於佛羅里達大學計算神經工程實驗室和加拿大安大略省麥克馬斯特大學認知系統實驗室的研究,將自適應濾波理論提升到一個新水平,提出了一種非線性自適應濾波器的新設計方法論。
-
涵蓋核最小均方算法、核仿射投影算法、核遞歸最小二乘算法、高斯過程回歸理論以及擴展的核遞歸最小二乘算法
-
介紹了一種稱為最大邊際似然的強大模型選擇方法
-
解決了核自適應濾波器的主要瓶頸——其不斷增長的結構
-
提供十二個以計算機為導向的實驗來加強概念,並可從作者的網站下載 MATLAB 代碼
-
每章結尾總結當前技術的最新進展及未來原創研究的潛在方向
核自適應濾波 非常適合對線上應用(數據流以每次一個樣本到達,並且希望獲得增量最佳解的應用)中的非線性自適應系統感興趣的工程師、計算機科學家和研究生。對於尋求解決實際問題的非線性自適應濾波方法論的人來說,這也是一本有用的指南。