Cause Effect Pairs in Machine Learning
暫譯: 機器學習中的因果效應配對
Guyon, Isabelle, Statnikov, Alexander, Batu, Berna Bakir
- 出版商: Springer
- 出版日期: 2020-11-05
- 售價: $4,440
- 貴賓價: 9.5 折 $4,218
- 語言: 英文
- 頁數: 372
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030218120
- ISBN-13: 9783030218126
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a "causal mechanism", in the sense that the values of one variable may have been generated from the values of the other.
This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
商品描述(中文翻譯)
本書介紹了因果結構學習領域的突破性進展。區分因果關係的問題(「高度是否會導致大氣壓的變化,或反之?」)在此被視為一個二元分類問題,將由機器學習算法來解決。根據 ChaLearn Cause-Effect Pairs Challenge 的結果,本書揭示了兩個變數的聯合分佈可以通過機器學習算法進行檢視,以揭示可能存在的「因果機制」,即一個變數的值可能是由另一個變數的值生成的。
本書提供了有關因果-效果對的最新技術的教學材料,並向讀者展示更高級的材料,包含一系列精選論文。補充材料包括視頻、幻燈片和代碼,這些都可以在研討會網站上找到。
從觀察數據中發現因果關係在數據科學中將變得越來越重要,隨著可用數據量的增加,這將成為檢測流行病學、社會科學、經濟學、生物學、醫學及其他科學中潛在觸發因素的一種手段。