Recent Advances in Ensembles for Feature Selection
暫譯: 特徵選擇中的集成方法最新進展

Bolon-Canedo, Veronica, Alonso-Betanzos, Amparo

  • 出版商: Springer
  • 出版日期: 2019-01-30
  • 售價: $4,600
  • 貴賓價: 9.5$4,370
  • 語言: 英文
  • 頁數: 205
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030079295
  • ISBN-13: 9783030079291
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance.

With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative.

The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining.

商品描述(中文翻譯)

本書提供了特徵選擇(Feature Selection, FS)領域中集成學習的全面概述,該方法通過結合多種方法的輸出,以獲得比任何單一方法更好的結果。書中回顧了各種結合部分結果的技術、測量多樣性和評估集成性能的方法。

隨著大數據的興起,特徵選擇(FS)變得比以往任何時候都更為必要,以實現降維。由於可用的方法眾多,選擇最適合特定情境的方法變得困難,因此集成範式成為一個有趣的替代方案。

作者首先專注於集成學習的基礎和經典方法,然後深入探討特徵選擇的集成特定方面,例如結合部分結果、測量多樣性和評估集成性能。最後,本書展示了特徵選擇集成成功應用的範例,並介紹了研究人員目前面臨的新挑戰。因此,本書為所有從事機器學習和數據挖掘的實踐者、研究人員和研究生提供了寶貴的指導。