Genetic Programming Theory and Practice XI (Genetic and Evolutionary Computation)
暫譯: 遺傳程式設計理論與實務 XI(遺傳與演化計算)

  • 出版商: Springer
  • 出版日期: 2014-04-01
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 227
  • 裝訂: Hardcover
  • ISBN: 1493903748
  • ISBN-13: 9781493903740
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud – communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions – model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

商品描述(中文翻譯)

這些貢獻由國際頂尖的遺傳編程(Genetic Programming, GP)研究者和實踐者撰寫,探討了理論與實證結果在現實世界問題上的協同作用,提供了對GP最新技術的全面視角。本卷的主題包括:進化約束、選擇機制的放鬆、多樣性保護策略、靈活的適應度評估、動態環境中的進化、多目標和多模態選擇、可進化性的基礎、可進化和自適應的進化運算子、在進化搜索中注入專家知識的基礎、問題難度和所需GP算法複雜度的分析、在雲端運行GP的基礎——通信、合作、靈活實現和集成方法。GP符號回歸的其他重點包括:(1)在函數發現模式中保證收斂到解的必要性;(2)模型驗證的問題;(3)基於生成的GP解進行洞察生成的模型分析工作流程的需求——模型探索、可視化、變數選擇、維度分析;(4)結合不同類型數據的問題。讀者將通過對最新和最重要結果的深入介紹,發現GP在各種問題領域的大規模現實應用。