Machine Learning: A Practical Approach on the Statistical Learning Theory
暫譯: 機器學習:統計學習理論的實用方法
F. Mello, Rodrigo, Antonelli Ponti, Moacir
- 出版商: Springer
- 出版日期: 2019-02-01
- 售價: $3,050
- 貴賓價: 9.5 折 $2,898
- 語言: 英文
- 頁數: 380
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030069494
- ISBN-13: 9783030069490
-
相關分類:
Machine Learning
-
其他版本:
Machine Learning: A Practical Approach on the Statistical Learning Theory
商品描述
This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible.
It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory.
Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines.
From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
商品描述(中文翻譯)
這本書以詳細且易於理解的方式介紹統計學習理論,透過實際範例、演算法和源代碼進行說明。它可以作為畢業或本科課程的教科書,適合自學者,或作為有關機器學習主要理論概念的參考資料。書中提供了應用於機器學習的線性代數和優化的基本概念,以及 R 語言的源代碼,使本書儘可能自足。
本書首先介紹機器學習的概念和演算法,例如感知器(Perceptron)、多層感知器(Multilayer Perceptron)和距離加權最近鄰(Distance-Weighted Nearest Neighbors),並附上範例,以提供必要的基礎,使讀者能夠理解偏差-方差困境(Bias-Variance Dilemma),這是統計學習理論的核心要點。
接著,我們介紹所有假設並正式化統計學習理論,允許對不同分類演算法的實際研究。然後,我們進一步探討集中不等式,直到達到泛化(Generalization)和大邊界(Large-Margin bounds),提供支持向量機(Support Vector Machines)的主要動機。
從那裡,我們介紹與支持向量機實現相關的所有必要優化概念。為了提供下一階段的發展,本書最後討論 SVM 核(SVM kernels),作為研究數據空間和改善分類結果的方式和動機。