Machine Learning: An Algorithmic Perspective, 2/e (Hardcover)
暫譯: 機器學習:算法視角(第二版,精裝本)
Stephen Marsland
- 出版商: CRC
- 出版日期: 2014-10-08
- 定價: $3,300
- 售價: 8.0 折 $2,640
- 語言: 英文
- 頁數: 457
- 裝訂: Hardcover
- ISBN: 1466583282
- ISBN-13: 9781466583283
-
相關分類:
Machine Learning、Algorithms-data-structures
-
相關翻譯:
機器學習:算法視角(Machine Learning: An Algorithmic Perspective 2/e) (簡中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$3,860$3,667 -
$1,900$1,805 -
$620$527 -
$2,200$2,090 -
$2,232Neural Network Learning: Theoretical Foundations (Paperback)
-
$1,980$1,881 -
$3,990An Elementary Introduction to Statistical Learning Theory (Hardcover)
-
$400$380 -
$950$903 -
$250NumPy 攻略-Python 科學計算與數據分析 (NumPy Cookbook)
-
$680$537 -
$280$238 -
$780$616 -
$350$277 -
$420$332 -
$680$537 -
$550$435 -
$580$452 -
$780$616 -
$360$284 -
$620$484 -
$1,617Deep Learning (Hardcover)
-
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$480$379 -
$1,980$1,881
商品描述
A Proven, Hands-On Approach for Students without a Strong Statistical Foundation
Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.
Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.
New to the Second Edition
- Two new chapters on deep belief networks and Gaussian processes
- Reorganization of the chapters to make a more natural flow of content
- Revision of the support vector machine material, including a simple implementation for experiments
- New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
- Additional discussions of the Kalman and particle filters
- Improved code, including better use of naming conventions in Python
Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.
商品描述(中文翻譯)
適合沒有強大統計基礎的學生的實證實作方法
自從暢銷的第一版出版以來,機器學習領域出現了幾個顯著的發展,包括對機器學習演算法的統計解釋的日益重視。不幸的是,沒有強大統計背景的計算機科學學生往往難以在這個領域入門。
為了彌補這一不足,機器學習:演算法視角,第二版幫助學生理解機器學習的演算法。它引導學生掌握相關的數學和統計知識,以及必要的程式設計和實驗技能。
第二版的新內容
- 兩個關於深度信念網路和高斯過程的新章節
- 章節重組,以使內容流暢性更自然
- 支持向量機材料的修訂,包括簡單的實驗實作
- 關於隨機森林、感知器收斂定理、準確性方法和多層感知器的共軛梯度優化的新材料
- 對卡爾曼濾波器和粒子濾波器的額外討論
- 改進的程式碼,包括在 Python 中更好的命名慣例使用
本書適合用於入門的一學期課程以及更高級的課程,強烈鼓勵學生實踐程式碼。每章都包括詳細的範例以及進一步閱讀和問題。所有用於創建範例的程式碼都可以在作者的網站上獲得。