A First Course in Machine Learning
暫譯: 機器學習入門課程

Rogers, Simon, Girolami, Mark

商品描述

"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."
-Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden

"This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."
-Daniel Barbara, George Mason University, Fairfax, Virginia, USA

"The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing 'just in time' the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts."
-Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark

"I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength...Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."
-David Clifton, University of Oxford, UK

"The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." 
-Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK

"This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning...The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective."
-Guangzhi Qu, Oakland University, Rochester, Michigan, USA

商品描述(中文翻譯)

機器學習入門》由 Simon Rogers 和 Mark Girolami 所著,是目前最好的機器學習入門書籍。它將嚴謹性和精確性與可讀性相結合,從最簡單的情境中詳細解釋貝葉斯分析的基本基礎,一直到無限混合模型、GP 和 MCMC 等主題的前沿。
-Devdatt Dubhashi,瑞典查爾默斯科技大學計算機科學與工程系教授

這本教科書在保持所需的嚴謹處理的同時,讀起來比其他同類書籍更容易。新章節使其在該領域處於前沿,涵蓋了過去十年來在機器學習中已成為主流的主題。
-Daniel Barbara,美國維吉尼亞州喬治梅森大學

Rogers 和 Girolami 的《機器學習入門》新版本是統計方法在機器學習中使用的絕佳入門書籍。該書介紹了數學建模、推理和預測等概念,並「及時」提供了讀者理解這些概念所需的線性代數、微積分和概率論的基本背景。
-Daniel Ortiz-Arroyo,丹麥奧爾堡大學埃斯比約副教授

我對這本書的內容與機器學習入門課程需求的緊密對接印象深刻,這是它最大的優勢……總體而言,這是一本務實且有幫助的書籍,與入門課程的需求非常契合,我會在接下來的幾個月中為我的學生參考這本書。
-David Clifton,英國牛津大學

這本書的第一版已經是針對高年級本科生或授課碩士課程的優秀機器學習入門教材,或者對任何想要了解這一有趣且重要的計算機科學領域的人來說都是如此。關於高斯過程、MCMC 和混合建模的附加章節提供了實踐項目的理想基礎,而不會干擾書籍第一部分中非常清晰易讀的基礎內容。
-Gavin Cawley,英國東安格利亞大學計算科學學院高級講師

這本書可以用於大學三年級/四年級學生或一年級研究生,以及希望探索機器學習領域的個人……該書不僅介紹了概念,還從批判性思維的角度探討了算法實現的基本思想。
-Guangzhi Qu,美國密歇根州羅徹斯特的奧克蘭大學

作者簡介

Simon Rogers is a lecturer in the School of Computing Science at the University of Glasgow, where he teaches a masters-level machine learning course on which this book is based. Dr. Rogers is an active researcher in machine learning, particularly applied to problems in computational biology. His research interests include the analysis of metabolomic data and the application of probabilistic machine learning techniques in the field of human-computer interaction.

Mark Girolami holds an honorary professorship in Computer Science at the University of Warwick, is an EPSRC Established Career Fellow (2012 - 2017) and previously an EPSRC Advanced Research Fellow (2007 - 2012). He is also honorary Professor of Statistics at University College London, is the Director of the EPSRC funded Research Network on Computational Statistics and Machine Learning and in 2011 was elected to the Fellowship of the Royal Society of Edinburgh when he was also awarded a Royal Society Wolfson Research

作者簡介(中文翻譯)

西蒙·羅傑斯是格拉斯哥大學計算科學學院的講師,他教授的碩士級機器學習課程是本書的基礎。羅傑斯博士是機器學習的活躍研究者,特別是在計算生物學問題上的應用。他的研究興趣包括代謝組數據的分析以及在人體與計算機互動領域中應用概率機器學習技術。

馬克·吉羅拉米在華威大學擔任計算機科學的名譽教授,是英國工程與物理科學研究 council (EPSRC) 的已建立職業研究員(2012 - 2017),並且曾擔任EPSRC的高級研究員(2007 - 2012)。他同時也是倫敦大學學院的統計學名譽教授,是由EPSRC資助的計算統計與機器學習研究網絡的主任,並於2011年當選為愛丁堡皇家學會的院士,當時他也獲得了皇家學會的沃爾夫森研究獎。