Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices: Physical Interpretation and Applications (Springer Theses)
暫譯: 二維無序晶格中傳輸問題的光譜方法:物理詮釋與應用(Springer 論文)
Evdokiya Georgieva Kostadinova
- 出版商: Springer
- 出版日期: 2018-12-24
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 107
- 裝訂: Hardcover
- ISBN: 3030022110
- ISBN-13: 9783030022112
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered.
Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory.
商品描述(中文翻譯)
本書介紹了光譜方法在無限無序系統中的傳輸問題,這些系統以安德森型哈密頓量為特徵。光譜方法確定了在任何維度和幾何形狀的無限晶格中,對於非零無序的存在性(以概率為一)延展態的存在。在這裡,作者專注於關鍵的二維情況,先前的數值和實驗結果顯示與理論不一致。由於不基於縮放理論,所提出的方法避免了與邊界條件相關的問題,並提供了一種考慮與各類無序互動的傳輸問題的替代方法。
本書首先對安德森型傳輸問題及其與物理系統的相關性進行一般性概述,然後更詳細地討論了該研究領域中最相關的理論、數值和實驗發展。創新光譜方法的數學表述隨後被引入,並提供了物理解釋及其在物理系統中的適用性討論,接著進行了對二維無序蜂窩、三角形和方形晶格中去局域化的數值研究。利用光譜分析量子滲透問題,研究了具有置換無序的二維蜂窩晶格中的傳輸。接下來,該方法的適用性擴展到經典範疇,檢查了二維無序複雜等離子晶體中晶格波的擴散,並討論了使用光譜理論研究複雜傳輸問題的未來發展建議。