Elements of Quantum Information
暫譯: 量子資訊的元素

Wolfgang P. Schleich, Herbert Walther

  • 出版商: Wiley
  • 出版日期: 2007-03-01
  • 售價: $9,470
  • 貴賓價: 9.5$8,997
  • 語言: 英文
  • 頁數: 528
  • 裝訂: Hardcover
  • ISBN: 3527407251
  • ISBN-13: 9783527407255
  • 相關分類: 量子 Quantum
  • 海外代購書籍(需單獨結帳)

商品描述

Description

'Elements of Quantum Information' introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - 'Elements of Quantum Information' provides an indispensable up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik/Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information.

Table of Contents

Preface to the Book.

Preface to the Journal.

List of Contributors.

1 The Deterministic Generation of Photons by Cavity Quantum Electrodynamics (H. Walther).

1.1 Introduction.

1.2 Oscillatory Exchange of Photons Between an Atom and a Cavity Field.

1.3 Other Microwave Cavity Experiments.

1.4 Cavity QED Experiments in the Visible Spectral Region.

1.5 Conclusions and Outlook.

References.

2 Optimization of Segmented Linear Paul Traps and Transport of Stored Particles (Stephan Schulz, Ulrich Poschinger, Kilian Singer, and Ferdinand Schmidt-Kaler).

2.1 Introduction.

2.2 Optimization of a Two-layer Microstructured Ion Trap.

2.3 Open Loop Control of Ion Transport.

2.4 Outlook.

A Appendix.

References.

3 Transport Dynamics of Single Ions in Segmented Microstructured Paul Trap Arrays (R. Reichle, D. Leibfried, R. B. Blakestad, J. Britton, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland).

3.1 Introduction.

3.2 Classical Equations of Motion.

3.3 Classical Dynamics of Ion Transport.

3.4 Quantum and Classical, Dragged Harmonic Oscillators with Constant Frequency.

3.5 The Dragged Quantum Harmonic Oscillator.

3.6 Transport Dynamics in aWell-controlled Regime.

3.7 Please supply a short title.

3.8 Conclusions.

A Appendix.

References.

4 Ensemble Quantum Computation and Algorithmic Cooling in Optical Lattices (M. Popp, K. G.H. Vollbrecht, and J. I. Cirac).

4.1 Introduction.

4.2 Physical System.

4.3 Ensemble Quantum Computation.

4.4 Cooling with Filtering.

4.5 Algorithmic Ground State Cooling.

4.6 Conclusion.

References.

5 Quantum Information Processing in Optical Lattices and Magnetic Microtraps (Philipp Treutlein, Tilo Steinmetz, Yves Colombe, Benjamin Lev, Peter Hommelhoff, Jakob Reichel, Markus Greiner, Olaf Mandel, Artur Widera, Tim Rom, Immanuel Bloch, and Theodor W. Hänsch).

5.1 Introduction.

5.2 Optical Lattices.

5.3 Magnetic Microtraps.

5.4 Conclusion.

References.

6 Two-dimensional Bose-Einstein Condensates in a CO2-laser Optical Lattice (Giovanni Cennini, Carsten Geckeler, Gunnar Ritt, Tobias Salger, and Martin Weitz).

6.1 Introduction.

6.2 Experimental Setup and Procedure.

6.3 Experimental Results.

6.4 Conclusions.

References.

7 Creating and Probing Long-range Order in Atomic Clouds (C. von Cube, S. Slama, M. Kohler, C. Zimmermann, and Ph.W. Courteille).

7.1 Introduction.

7.2 Collective Coupling.

7.3 Creating Long-range Order.

7.4 Probing Long-range Order.

7.5 Conclusion.

References.

8 Detecting Neutral Atoms on an Atom Chip (Marco Wilzbach, Albrecht Haase, Michael Schwarz, Dennis Heine, Kai Wicker, Xiyuan Liu, Karl-Heinz Brenner, Sönke Groth, Thomas Fernholz, Björn Hessmo, and Jörg Schmiedmayer).

8.1 Introduction.

8.2 Detecting Single Atoms.

8.3 Properties of Fiber Cavities.

8.4 Other Fiber Optical Components for the Atom Chip.

8.5 Integration of Fibers on the Atom Chip.

8.6 Pilot Test for Atom Detection with Small Waists.

8.7 Conclusion.

References.

9 High Resolution Rydberg Spectroscopy of Ultracold Rubidium Atoms (Axel Grabowski, Rolf Heidemann, Robert Löw, Jürgen Stuhler, and Tilman Pfau).

9.1 Introduction.

9.2 Experimental Setup and Cold Atom Preparation.

9.3 Spectroscopy of Rydberg States, |m<sub>j</sub>| Splitting of the Rydberg States.

9.4 Spatial and State Selective Addressing of Rydberg States.

9.5 Autler-Townes Splitting.

9.6 Conclusion and Outlook.

References.

10 Prospects of Ultracold Rydberg Gases for Quantum Information Processing (Markus Reetz-Lamour, Thomas Amthor, Johannes Deiglmayr, Sebastian Westermann, Kilian Singer, André Luiz de Oliveira, Luis Gustavo Marcassa, and Matthias Weidemüller).

10.1 Introduction.

10.2 Excitation of Rydberg Atoms from an Ultracold Gas.

10.3 Van-der-Waals Interaction.

10.4 States with Permanent Electric Dipole Moments.

10.5 Förster Resonances.

10.6 Conclusion.

References.

11 Quantum State Engineering with Spins (Andreas Heidebrecht, Jens Mende, and Michael Mehring).

11.1 Introduction.

11.2 Deutsch-Josza Algorithm.

11.3 Entanglement of an Electron and Nuclear Spin in <sup>15</sup>N@C<sub>60</sub>.

11.4 Spin Quantum Computing in the Solid State: S-bus.

11.5 Summary and Outlook.

References.

12 Improving the Purity of One- and Two-qubit Gates (Sigmund Kohler and Peter Hänggi).

12.1 Introduction.

12.2 Quantum Gate with Bit-flip Noise.

12.3 Coherence Stabilization for Single Qubits.

12.4 Coherence Stabilization for a CNOT Gate.

12.5 Conclusions.

A Appendix.

References.

13 How to Distill Entanglement from a Finite Amount of Qubits? (Stefan Probst-Schendzielorz, Thorsten Bschorr, and Matthias Freyberger).

13.1 Introduction.

13.2 Entanglement Distillation.

13.3 CNOT Distillation for a Finite Set of Entangled Systems.

13.4 Example of the Iterative Distillation for Small Finite Sets.

13.5 Conclusions.

A Appendix.

References.

14 Experimental Quantum Secret Sharing (Christian Schmid, Pavel Trojek, Sascha Gaertner, Mohamed Bourennane, Christian Kurtsiefer, Marek Zukowski, and Harald Weinfurter).

14.1 Introduction.

14.2 Theory.

14.3 Experiment.

14.4 Conclusion.

References.

15 Free Space Quantum Key Distribution: Towards a Real Life Application (Henning Weier, Tobias Schmitt-Manderbach, Nadja Regner, Christian Kurtsiefer, and Harald Weinfurter).

15.1 Introduction.

15.2 Setup.

15.3 Conclusion.

References.

16 Continuous Variable Entanglement Between Frequency Modes (Oliver Glöckl, Ulrik L. Andersen, and Gerd Leuchs).

16.1 Introduction.

16.2 Sideband Separation.

16.3 Experiment and Results.

16.4 Conclusion and Discussion.

References.

17 Factorization of Numbers with Physical Systems (Wolfgang Merkel, Ilya Sh. Averbukh, Bertrand Girard, Michael Mehring, Gerhard G. Paulus, and Wolfgang P. Schleich).

17.1 Introduction.

17.2 Chirping a Two-photon Transition.

17.3 Driving a One-photon Transition.

17.4 Factorization.

17.5 NMR-experiment.

17.6 Conclusions.

References.

18 Quantum Algorithms for Number Fields (Daniel Haase and Helmut Maier).

18.1 Introduction.

18.2 Geometry of Numbers.

18.3 Reduction.

18.4 Results from Analytic Number Theory.

18.5 Examples of Minima Distributions.

18.6 Computing the Regulator.

18.7 Computation of Other Invariants.

References.

19 Implementation Complexity of Physical Processes as a Natural Extension of Computational Complexity (Dominik Janzing).

19.1 Introduction.

19.2 Similar Complexity Bounds for Different Tasks.

19.3 Relating Control Problems to Hard Computational Problems.

19.4 The Need for a Control-theoretic Foundation of Complexity.

19.5 Hamiltonians that Compute Autonomously.

References.

20 Implementation of Generalized Measurements with Minimal Disturbance on a Quantum Computer (Thomas Decker and Markus Grassl).

20.1 Introduction.

20.2 Minimal-disturbing Implementations of POVMs.

20.3 Symmetric Matrices and their Structure.

20.4 Implementation of Symmetric POVMs.

20.5 Cyclic and Heisenberg-Weyl Groups.

20.6 Conclusions and Outlook.

References.

21 Full Counting Statistics of Interacting Electrons (D. A. Bagrets, Y. Utsumi, D. S. Golubev, and Gerd Schön).

21.1 Introduction.

21.2 Concepts of FCS.

21.3 Full Counting Statistics in Interacting Quantum Dots.

21.4 FCS and Coulomb Interaction in Diffusive Conductors.

21.5 Summary.

References.

22 Quantum Limit of the Carnot Engine (Friedemann Tonner and Günter Mahler).

22.1 Introduction.

22.2 Spin-oscillator Model.

22.3 Master Equation.

22.4 Machine Cycles.

22.5 Numerical Results.

22.6 Summary and Conclusions.

References.

Appendix: Colour Plates.

Index.

商品描述(中文翻譯)

**描述**

《量子資訊的元素》向讀者介紹了量子資訊處理這一迷人的領域,該領域位於計算機科學、物理學、數學和工程學的交界處。這一跨學科的科學分支依賴於量子力學作為高潛力現代應用的資源。該書涵蓋了實驗、應用和專門主題,所有內容均由知名專家撰寫,提供了這一快速發展領域的最新狀況,並將讀者帶到當前研究的前沿。這些文章最初作為期刊《物理進展/Progress of Physics》的特刊發表,隨後經過仔細更新。本書將成為任何研究和專注於量子資訊的實驗和理論的人的靈感來源和資訊來源。

**目錄**

**書的前言**

**期刊的前言**

**貢獻者名單**

**1 由腔量子電動力學確定性生成光子**(H. Walther)

1.1 介紹。

1.2 原子與腔場之間的光子振盪交換。

1.3 其他微波腔實驗。

1.4 可見光譜區域的腔量子電動力學實驗。

1.5 結論與展望。

參考文獻。

**2 分段線性保羅陷阱的優化及儲存粒子的傳輸**(Stephan Schulz, Ulrich Poschinger, Kilian Singer, 和 Ferdinand Schmidt-Kaler)

2.1 介紹。

2.2 雙層微結構離子陷阱的優化。

2.3 離子傳輸的開環控制。

2.4 展望。

附錄。

參考文獻。

**3 分段微結構保羅陷阱陣列中單一離子的傳輸動力學**(R. Reichle, D. Leibfried, R. B. Blakestad, J. Britton, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, 和 D. J. Wineland)

3.1 介紹。

3.2 古典運動方程。

3.3 離子傳輸的古典動力學。

3.4 量子與古典,拖曳的諧振子與恆定頻率。

3.5 拖曳的量子諧振子。

3.6 在良好控制的範疇中的傳輸動力學。

3.7 請提供一個簡短的標題。

3.8 結論。

附錄。

參考文獻。

**4 光晶格中的集成量子計算與算法冷卻**(M. Popp, K. G.H. Vollbrecht, 和 J. I. Cirac)

4.1 介紹。

4.2 物理系統。

4.3 集成量子計算。

4.4 使用過濾進行冷卻。

4.5 算法基態冷卻。

4.6 結論。

參考文獻。

**5 光晶格和磁性微陷阱中的量子資訊處理**(Philipp Treutlein, Tilo Steinmetz, Yves Colombe, Benjamin Lev, Peter Hommelhoff, Jakob Reichel, Markus Greiner, Olaf Mandel, Artur Widera, Tim Rom, Immanuel Bloch, 和 Theodor W. Hänsch)

5.1 介紹。

5.2 光晶格。

5.3 磁性微陷阱。

5.4 結論。

參考文獻。

**6 CO₂激光光晶格中的二維玻色-愛因斯坦凝聚**(Giovanni Cennini, Carsten Geckeler, Gunnar Ritt, Tobias Salger, 和 Martin Weitz)

6.1 介紹。

6.2 實驗設置與程序。

6.3 實驗結果。

6.4 結論。

參考文獻。

**7 在原子雲中創建和探測長程有序**(C. von Cube, S. Slama, M. Kohler, C. Zimmermann, 和 Ph.W. Courteille)

7.1 介紹。

7.2 集體耦合。

7.3 創建長程有序。

7.4 探測長程有序。

7.5 結論。

參考文獻。

**8 在原子晶片上檢測中性原子**(Marco Wilzbach, Albrecht Haase, Michael Schwarz, Dennis Heine, Kai Wicker, Xiyuan Liu, Karl-Heinz Brenner, Sönke Groth, Thomas Fernholz, Björn Hessmo, 和 Jörg Schmiedmayer)

8.1 介紹。

8.2 檢測單一原子。

8.3 光纖腔的特性。

8.4 原子晶片的其他光纖光學元件。

8.5 在原子晶片上整合光纖。

8.6 小腰徑原子檢測的試點測試。

8.7 結論。

參考文獻。

**9 超冷銣原子的高解析度瑞德堡光譜學**(Axel Grabowski, Rolf Heidemann, Robert Löw, Jürgen Stuhler, 和 Tilman Pfau)

9.1 介紹。

9.2 實驗設置與冷原子準備。

9.3 瑞德堡態的光譜學,|mj|的瑞德堡態分裂。

9.4 瑞德堡態的空間和狀態選擇性地址。

9.5 Autler-Townes分裂。

9.6 結論與展望。

參考文獻。

**10 超冷瑞德堡氣體在量子資訊處理中的前景**(Markus Reetz-Lamour, Thomas Amthor, Johannes Deiglmayr, Sebastian Westermann, Kilian Singer, André Luiz de Oliveira, Luis Gustavo Marcassa, 和 Matthias Weidemüller)

10.1 介紹。

10.2 從超冷氣體激發瑞德堡原子。

10.3 范德瓦耳斯相互作用。

10.4 具有永久電偶極矩的狀態。

10.5 Förster共振。

10.6 結論。

參考文獻。

**11 透過自旋進行量子態工程**(Andreas Heidebrecht, Jens Mende, 和 Michael Mehring)

11.1 介紹。

11.2 Deutsch-Josza算法。

11.3 在15N@C60中電子與核自旋的糾纏。

11.4 固態中的自旋量子計算:S-bus。

11.5 總結與展望。

參考文獻。

**12 改善一比特和二比特閘的純度**(Sigmund Kohler 和 Peter Hänggi)

12.1 介紹。

12.2 具有比特翻轉噪聲的量子閘。

12.3 單量子比特的相干穩定化。

12.4 CNOT閘的相干穩定化。

12.5 結論。

附錄。

參考文獻。

**13 如何從有限數量的量子比特中提煉糾纏?**(Stefan Probst-Schendzielorz, Thorsten Bschorr, 和 Matthias Freyberger)

13.1 介紹。

13.2 糾纏提煉。

13.3 對有限糾纏系統集的CNOT提煉。

13.4 小有限集的迭代提煉示例。

13.5 結論。

附錄。

參考文獻。

**14 實驗量子秘密共享**(Christian Schmid, Pavel Trojek, Sascha Gaertner, Mohamed Bourennane, Christian Kurtsiefer, Marek Zukowski, 和 Harald Weinfurter)

14.1 介紹。

14.2 理論。

14.3 實驗。

14.4 結論。

參考文獻。

**15 自由空間量子密鑰分發:邁向實際應用**(Henning Weier, Tobias Schmitt-Manderbach, Nadja Regner, Christian Kurtsiefer, 和 Haral)