Data Science with Python
暫譯: 使用 Python 的資料科學
Chopra, Rohan, England, Aaron, Noordeen Alaudeen, Mohamed
- 出版商: Packt Publishing
- 出版日期: 2019-07-09
- 售價: $1,660
- 貴賓價: 9.5 折 $1,577
- 語言: 英文
- 頁數: 426
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838552863
- ISBN-13: 9781838552862
-
相關分類:
Python、程式語言、Data Science
-
相關翻譯:
Python 數據科學實戰 (Data Science with Python) (簡中版)
買這商品的人也買了...
-
$980$774 -
$480$408 -
$550$468 -
$594$564
相關主題
商品描述
Data Science with Python begins by introducing you to data science and teaches you to install the packages you need to create a data science coding environment. You will learn three major techniques in machine learning: unsupervised learning, supervised learning, and reinforcement learning. You will also explore basic classification and regression techniques, such as support vector machines, decision trees, and logistic regression.
As you make your way through chapters, you will study the basic functions, data structures, and syntax of the Python language that are used to handle large datasets with ease. You will learn about NumPy and pandas libraries for matrix calculations and data manipulation, study how to use Matplotlib to create highly customizable visualizations, and apply the boosting algorithm XGBoost to make predictions. In the concluding chapters, you will explore convolutional neural networks (CNNs), deep learning algorithms used to predict what is in an image. You will also understand how to feed human sentences to a neural network, make the model process contextual information, and create human language processing systems to predict the outcome.
By the end of this book, you will be able to understand and implement any new data science algorithm and have the confidence to experiment with tools or libraries other than those covered in the book.
商品描述(中文翻譯)
資料科學與 Python 開始時會介紹資料科學,並教你安裝創建資料科學編碼環境所需的套件。你將學習三種主要的機器學習技術:無監督學習(unsupervised learning)、監督學習(supervised learning)和強化學習(reinforcement learning)。你還將探索基本的分類和回歸技術,例如支持向量機(support vector machines)、決策樹(decision trees)和邏輯回歸(logistic regression)。
在你逐章學習的過程中,你將研究 Python 語言的基本函數、資料結構和語法,這些都是用來輕鬆處理大型資料集的。你將了解 NumPy 和 pandas 函式庫,用於矩陣計算和資料操作,學習如何使用 Matplotlib 創建高度可自訂的視覺化,並應用提升演算法 XGBoost 來進行預測。在最後幾章中,你將探索卷積神經網絡(CNNs),這是一種用於預測圖像內容的深度學習演算法。你還將了解如何將人類句子輸入神經網絡,使模型處理上下文資訊,並創建人類語言處理系統以預測結果。
在本書結束時,你將能夠理解並實現任何新的資料科學演算法,並有信心嘗試書中未涵蓋的其他工具或函式庫。