Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS
暫譯: 在Python中預訓練視覺與大型語言模型:在AWS上構建和部署基礎模型的端到端技術
Webber, Emily
- 出版商: Packt Publishing
- 出版日期: 2023-05-31
- 售價: $2,030
- 貴賓價: 9.5 折 $1,929
- 語言: 英文
- 頁數: 258
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180461825X
- ISBN-13: 9781804618257
-
相關分類:
Amazon Web Services、LangChain、Python、程式語言
-
相關翻譯:
Python預訓練視覺和大語言模型 (簡中版)
海外代購書籍(需單獨結帳)
相關主題
商品描述
Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples
Key Features:
- Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines.
- Explore large-scale distributed training for models and datasets with AWS and SageMaker examples.
- Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring.
Book Description:
Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization.
With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models.
You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines.
By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.
What You Will Learn:
- Find the right use cases and datasets for pretraining and fine-tuning
- Prepare for large-scale training with custom accelerators and GPUs
- Configure environments on AWS and SageMaker to maximize performance
- Select hyperparameters based on your model and constraints
- Distribute your model and dataset using many types of parallelism
- Avoid pitfalls with job restarts, intermittent health checks, and more
- Evaluate your model with quantitative and qualitative insights
- Deploy your models with runtime improvements and monitoring pipelines
Who this book is for:
If you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.
商品描述(中文翻譯)
掌握訓練視覺和大型語言模型的藝術,結合概念基礎和業界專家的指導。了解 AWS 服務和設計模式,並附上相關的程式碼範例。
主要特點:
- 學習開發、訓練、調整和應用基礎模型,並優化端到端的流程。
- 探索使用 AWS 和 SageMaker 範例進行的大規模分散式訓練,適用於模型和數據集。
- 評估、部署和運營您的自定義模型,並進行偏見檢測和流程監控。
書籍描述:
基礎模型徹底改變了機器學習。從 BERT 到 ChatGPT,從 CLIP 到 Stable Diffusion,當數十億個參數與大型數據集和數百到數千個 GPU 結合時,結果無疑是創紀錄的。本書中的建議、指導和程式碼範例將幫助您在 AWS 和 Amazon SageMaker 上從零開始預訓練和微調自己的基礎模型,並將其應用於您組織中的數百個用例。
在資深 AWS 和機器學習專家 Emily Webber 的指導下,本書幫助您學習從項目構思到數據集準備、訓練、評估和部署大型語言、視覺和多模態模型所需的一切。通過對基本概念的逐步解釋和實用範例,您將從掌握預訓練的概念開始,準備您的數據集和模型,配置您的環境,進行訓練、微調、評估、部署和優化您的基礎模型。
您將學習如何應用擴展法則,將模型和數據集分佈到多個 GPU 上,消除偏見,實現高吞吐量,並構建部署流程。
在本書結束時,您將具備良好的能力,開始自己的項目,以預訓練和微調未來的基礎模型。
您將學到的內容:
- 找到適合預訓練和微調的用例和數據集
- 為使用自定義加速器和 GPU 進行大規模訓練做好準備
- 在 AWS 和 SageMaker 上配置環境以最大化性能
- 根據您的模型和約束選擇超參數
- 使用多種平行化方法分佈您的模型和數據集
- 避免作業重啟、間歇性健康檢查等陷阱
- 使用定量和定性見解評估您的模型
- 以運行時改進和監控流程部署您的模型
本書適合誰:
如果您是希望開始基礎建模項目的機器學習研究人員或愛好者,本書適合您。應用科學家、數據科學家、機器學習工程師、解決方案架構師、產品經理和學生都將從本書中受益。需要具備中級 Python 技能,以及雲計算的入門概念。需要對深度學習基礎有深入理解,並將解釋高級主題。本書內容涵蓋高級機器學習和雲技術,以可行且易於理解的方式進行解釋。