Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch (Paperback)
暫譯: 實戰圖神經網絡:使用Python和PyTorch構建強大圖形和深度學習應用的實用技術與架構(平裝本)

Labonne, Maxime

買這商品的人也買了...

相關主題

商品描述

Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps

Purchase of the print or Kindle book includes a free PDF eBook

 

Key Features:

  • Implement state-of-the-art graph neural network architectures in Python
  • Create your own graph datasets from tabular data
  • Build powerful traffic forecasting, recommender systems, and anomaly detection applications

 

 

Book Description:

Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.

Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you'll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps.

By the end of this book, you'll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.

 

What You Will Learn:

  • Understand the fundamental concepts of graph neural networks
  • Implement graph neural networks using Python and PyTorch Geometric
  • Classify nodes, graphs, and edges using millions of samples
  • Predict and generate realistic graph topologies
  • Combine heterogeneous sources to improve performance
  • Forecast future events using topological information
  • Apply graph neural networks to solve real-world problems

 

Who this book is for:

This book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you're new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.

商品描述(中文翻譯)

使用 PyTorch Geometric 設計穩健的圖神經網絡,結合圖論和神經網絡的最新發展與應用

購買印刷版或 Kindle 版書籍可獲得免費 PDF 電子書

主要特色:


  • 在 Python 中實現最先進的圖神經網絡架構

  • 從表格數據創建自己的圖數據集

  • 構建強大的交通預測、推薦系統和異常檢測應用

書籍描述:

圖神經網絡是一種非常有效的工具,用於分析可以表示為圖的數據,例如社交網絡、化學化合物或交通網絡。在過去幾年中,圖神經網絡的使用激增,其應用範圍從自然語言處理和計算機視覺到推薦系統和藥物發現。

《使用 Python 的圖神經網絡實踐》從圖論的基本原理開始,並展示如何從表格數據創建圖數據集。隨著學習的深入,您將探索主要的圖神經網絡架構,並學習圖卷積、自注意力、鏈接預測和異質圖等基本概念。最後,本書提出應用以解決現實問題,使您能夠建立專業的作品集。代碼可在線獲得,並且可以輕鬆適應其他數據集和應用。

在本書結束時,您將學會創建圖數據集,使用 Python 和 PyTorch Geometric 實現圖神經網絡,並將其應用於解決現實世界的問題,還包括構建和訓練圖神經網絡模型以進行節點和圖的分類、鏈接預測等。

您將學到的內容:


  • 理解圖神經網絡的基本概念

  • 使用 Python 和 PyTorch Geometric 實現圖神經網絡

  • 使用數百萬個樣本對節點、圖和邊進行分類

  • 預測和生成現實的圖拓撲

  • 結合異質來源以提高性能

  • 使用拓撲信息預測未來事件

  • 應用圖神經網絡解決現實問題

本書適合誰:

本書適合對圖神經網絡及其應用感興趣的機器學習從業者和數據科學家,以及尋找這一快速增長領域的綜合參考的學生。無論您是圖神經網絡的新手還是希望將知識提升到更高水平的讀者,本書都能滿足您的需求。具備機器學習和 Python 編程的基本知識將幫助您充分利用本書。