Applied Deep Learning on Graphs: Leverage graph data for business applications using specialized deep learning architectures
暫譯: 應用於圖形的深度學習:利用專門的深度學習架構將圖形數據應用於商業應用

Khandelwal, Lakshya, Das, Subhajoy

  • 出版商: Packt Publishing
  • 出版日期: 2024-12-27
  • 售價: $2,040
  • 貴賓價: 9.5$1,938
  • 語言: 英文
  • 頁數: 250
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1835885969
  • ISBN-13: 9781835885963
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

商品描述

Gain a deep understanding of applied deep learning on graphs from data, algorithm, and engineering viewpoints to construct enterprise-ready solutions using deep learning on graph data for wide range of domains

Key Features:

- Explore graph data in real-world systems and leverage graph learning for impactful business results

- Dive into popular and specialized deep neural architectures like graph convolutional and attention networks

- Learn how to build scalable and productionizable graph learning solutions

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs).

This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You'll see how graph data structures power today's interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You'll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you'll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision.

By the end of this book, you'll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies.

What You Will Learn:

- Discover how to extract business value through a graph-centric approach

- Develop a basic understanding of learning graph attributes using machine learning

- Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures

- Understand industry applications of graph deep learning, including recommender systems and NLP

- Identify and overcome challenges in production such as scalability and interpretability

- Perform node classification and link prediction using PyTorch Geometric

Who this book is for:

For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.

Table of Contents

- Introduction to Graph Learning

- Graph Learning in the Real World

- Graph Representation Learning

- Deep Learning Models for Graphs

- Graph Deep Learning Challenges

- Harnessing Large Language Models for Graph Learning

- Graph Deep Learning in Practice

- Graph Deep Learning for Natural Language Processing

- Building Recommendation Systems Using Graph Deep Learning

- Graph Deep Learning for Computer Vision

- Emerging Applications

- The Future of Graph Learning

商品描述(中文翻譯)

深入了解應用於圖形的深度學習,從數據、算法和工程的角度構建企業級解決方案,使用圖形數據的深度學習應用於各種領域

主要特點:
- 探索現實系統中的圖形數據,利用圖形學習實現有影響力的商業成果
- 深入了解流行和專門的深度神經網絡架構,如圖形卷積網絡和注意力網絡
- 學習如何構建可擴展且可投入生產的圖形學習解決方案
- 購買印刷版或Kindle書籍可獲得免費PDF電子書

書籍描述:
Lakshya和Subhajoy擁有在Walmart、Adobe、Samsung和Arista Networks等行業巨頭的尖端AI產品開發方面的專業知識,為您提供有關圖形神經網絡(GNNs)變革性世界的現實見解。

本書揭開了GNNs的神秘面紗,指導您從基礎概念到高級技術和現實應用。您將看到圖形數據結構如何驅動當今互聯的世界,為什麼專門的深度學習方法至關重要,以及如何解決現有方法的挑戰。您將從剖析早期的圖形表示技術如DeepWalk和node2vec開始。接著,本書將帶您了解流行的GNN架構,涵蓋圖形卷積網絡和注意力網絡、自編碼器模型、LLMs,以及在圖形數據上進行檢索增強生成等技術。憑藉強大的理論基礎,您將無縫地導航實際實施,掌握可擴展性、可解釋性以及自然語言處理、推薦系統和計算機視覺等應用領域的關鍵主題。

在本書結束時,您將掌握創新超越當前方法所需的基本理念和實際編碼技能,並獲得對GNN技術未來的戰略見解。

您將學到什麼:
- 發現如何通過以圖形為中心的方法提取商業價值
- 發展使用機器學習學習圖形屬性的基本理解
- 確定傳統深度學習在圖形數據中的局限性,並探索專門的基於圖形的架構
- 了解圖形深度學習的行業應用,包括推薦系統和自然語言處理
- 確定並克服生產中的挑戰,如可擴展性和可解釋性
- 使用PyTorch Geometric執行節點分類和鏈接預測

本書適合誰:
本書為數據科學家、機器學習從業者、深入研究基於圖形數據的研究人員以及開發圖形相關應用的軟體工程師提供理論和實踐指導,並附有現實範例。假設讀者對機器學習概念和Python有基本的了解。

目錄
- 圖形學習介紹
- 現實世界中的圖形學習
- 圖形表示學習
- 用於圖形的深度學習模型
- 圖形深度學習挑戰
- 利用大型語言模型進行圖形學習
- 圖形深度學習實踐
- 圖形深度學習在自然語言處理中的應用
- 使用圖形深度學習構建推薦系統
- 圖形深度學習在計算機視覺中的應用
- 新興應用
- 圖形學習的未來