Graph Data Science with Neo4j: Learn how to use Neo4j 5 with Graph Data Science library 2.0 and its Python driver for your project (Paperback)
暫譯: 使用 Neo4j 進行圖形數據科學:學習如何使用 Neo4j 5 與圖形數據科學庫 2.0 及其 Python 驅動程式來實現您的專案 (平裝本)
Scifo, Estelle
- 出版商: Packt Publishing
- 出版日期: 2023-01-31
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 288
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180461274X
- ISBN-13: 9781804612743
-
相關分類:
NoSQL、Python、程式語言、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$450$356 -
$320$272 -
$480$379 -
$1,430$1,359 -
$480$408 -
$650$507 -
$580$458 -
$680$537 -
$390$371 -
$580$458 -
$880$695 -
$680$537 -
$352分佈式實時系統數據分發服務
-
$520$406 -
$2,250$2,138 -
$580$458 -
$880$695 -
$680$537 -
$505Unity 2020 遊戲開發快速上手
-
$305Python 中文自然語言處理基礎與實戰
-
$403$379 -
$1,074$1,020 -
$594$564 -
$305知識圖譜:方法、工具與案例
-
$1,948Laws of UX: Using Psychology to Design Better Products & Services, 2/e (Paperback)
商品描述
Supercharge your data with the limitless potential of Neo4j 5, the premier graph database for cutting-edge machine learning
Purchase of the print or Kindle book includes a free PDF eBook
Key Features
• Extract meaningful information from graph data with Neo4j's latest version 5
• Use Graph Algorithms into a regular Machine Learning pipeline in Python
• Learn the core principles of the Graph Data Science Library to make predictions and create data science pipelines.
Book Description
Neo4j, along with its Graph Data Science (GDS) library, is a complete solution to store, query, and analyze graph data. As graph databases are getting more popular among developers, data scientists are likely to face such databases in their career, making it an indispensable skill to work with graph algorithms for extracting context information and improving the overall model prediction performance.
Data scientists working with Python will be able to put their knowledge to work with this practical guide to Neo4j and the GDS library that offers step-by-step explanations of essential concepts and practical instructions for implementing data science techniques on graph data using the latest Neo4j version 5 and its associated libraries. You'll start by querying Neo4j with Cypher and learn how to characterize graph datasets. As you get the hang of running graph algorithms on graph data stored into Neo4j, you'll understand the new and advanced capabilities of the GDS library that enable you to make predictions and write data science pipelines. Using the newly released GDSL Python driver, you'll be able to integrate graph algorithms into your ML pipeline.
By the end of this book, you'll be able to take advantage of the relationships in your dataset to improve your current model and make other types of elaborate predictions.
What you will learn
• Use the Cypher query language to query graph databases such as Neo4j
• Build graph datasets from your own data and public knowledge graphs
• Make graph-specific predictions such as link prediction
• Explore the latest version of Neo4j to build a graph data science pipeline
• Run a scikit-learn prediction algorithm with graph data
• Train a predictive embedding algorithm in GDS and manage the model store
Who this book is for
If you're a data scientist or data professional with a foundation in the basics of Neo4j and are now ready to understand how to build advanced analytics solutions, you'll find this graph data science book useful. Familiarity with the major components of a data science project in Python and Neo4j is necessary to follow the concepts covered in this book.
商品描述(中文翻譯)
超充實你的數據,利用 Neo4j 5 的無限潛力,這是尖端機器學習的首選圖形資料庫。
購買印刷版或 Kindle 書籍包括免費 PDF 電子書。
主要特點
• 從 Neo4j 最新版本 5 的圖形數據中提取有意義的信息
• 在 Python 中將圖形算法應用於常規機器學習管道
• 學習圖形數據科學庫的核心原則,以進行預測並創建數據科學管道。
書籍描述
Neo4j 及其圖形數據科學 (GDS) 庫是存儲、查詢和分析圖形數據的完整解決方案。隨著圖形資料庫在開發者中越來越受歡迎,數據科學家在職業生涯中可能會面對這類資料庫,因此掌握圖形算法以提取上下文信息並改善整體模型預測性能成為一項不可或缺的技能。
使用 Python 的數據科學家將能夠利用這本實用指南來應用他們的知識,該指南針對 Neo4j 和 GDS 庫提供了逐步解釋的基本概念和實施數據科學技術的實用指導,使用最新的 Neo4j 版本 5 及其相關庫。你將從使用 Cypher 查詢 Neo4j 開始,學習如何描述圖形數據集。隨著你熟悉在存儲於 Neo4j 的圖形數據上運行圖形算法,你將理解 GDS 庫的新功能和高級功能,這些功能使你能夠進行預測並編寫數據科學管道。使用新發布的 GDSL Python 驅動程序,你將能夠將圖形算法整合到你的機器學習管道中。
在本書結束時,你將能夠利用數據集中的關係來改善當前模型並進行其他類型的複雜預測。
你將學到的內容
• 使用 Cypher 查詢語言查詢圖形資料庫,如 Neo4j
• 從自己的數據和公共知識圖構建圖形數據集
• 進行圖形特定的預測,如鏈接預測
• 探索最新版本的 Neo4j 以構建圖形數據科學管道
• 使用圖形數據運行 scikit-learn 預測算法
• 在 GDS 中訓練預測嵌入算法並管理模型存儲
本書適合誰
如果你是一位數據科學家或數據專業人士,對 Neo4j 的基本知識有一定基礎,並且現在準備了解如何構建高級分析解決方案,那麼你會發現這本圖形數據科學書籍非常有用。熟悉 Python 和 Neo4j 中數據科學項目的主要組件是理解本書所涵蓋概念的必要條件。
目錄大綱
1. Introducing and Installing Neo4j
2. Using Existing Data to Build a Knowledge Graph
3. Characterizing a Graph Dataset
4. Using Graph Algorithms to Characterize a Graph Dataset
5. Visualizing Graph Data
6. Building a Machine Learning Model with Graph Features
7. Automatically Extracting Features with Graph Embeddings for Machine Learning
8. Building a GDS Pipeline for Node Classification Model Training
9. Predicting Future Edges
10. Writing Your Custom Graph Algorithm with the Pregel API
目錄大綱(中文翻譯)
1. Introducing and Installing Neo4j
2. Using Existing Data to Build a Knowledge Graph
3. Characterizing a Graph Dataset
4. Using Graph Algorithms to Characterize a Graph Dataset
5. Visualizing Graph Data
6. Building a Machine Learning Model with Graph Features
7. Automatically Extracting Features with Graph Embeddings for Machine Learning
8. Building a GDS Pipeline for Node Classification Model Training
9. Predicting Future Edges
10. Writing Your Custom Graph Algorithm with the Pregel API