Practical Automated Machine Learning Using H2O.ai: Discover the power of automated machine learning, from experimentation through to deployment to pro
暫譯: 實用的自動化機器學習使用 H2O.ai:探索自動化機器學習的力量,從實驗到部署的全過程

Ajgaonkar, Salil

  • 出版商: Packt Publishing
  • 出版日期: 2022-09-26
  • 售價: $1,760
  • 貴賓價: 9.5$1,672
  • 語言: 英文
  • 頁數: 396
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1801074526
  • ISBN-13: 9781801074520
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Accelerate the adoption of machine learning by automating away the complex parts of the ML pipeline using H2O.ai

Key Features

- Learn how to train the best models with a single click using H2O AutoML
- Get a simple explanation of model performance using H2O Explainability
- Easily deploy your trained models to production using H2O MOJO and POJO

Book Description

With the huge amount of data being generated over the internet and the benefits that Machine Learning (ML) predictions bring to businesses, ML implementation has become a low-hanging fruit that everyone is striving for. The complex mathematics behind it, however, can be discouraging for a lot of users. This is where H2O comes in – it automates various repetitive steps, and this encapsulation helps developers focus on results rather than handling complexities.

You'll begin by understanding how H2O's AutoML simplifies the implementation of ML by providing a simple, easy-to-use interface to train and use ML models. Next, you'll see how AutoML automates the entire process of training multiple models, optimizing their hyperparameters, as well as explaining their performance. As you advance, you'll find out how to leverage a Plain Old Java Object (POJO) and Model Object, Optimized (MOJO) to deploy your models to production. Throughout this book, you'll take a hands-on approach to implementation using H2O that'll enable you to set up your ML systems in no time.

By the end of this H2O book, you'll be able to train and use your ML models using H2O AutoML, right from experimentation all the way to production without a single need to understand complex statistics or data science.

What you will learn

- Get to grips with H2O AutoML and learn how to use it
- Explore the H2O Flow Web UI
- Understand how H2O AutoML trains the best models and automates hyperparameter optimization
- Find out how H2O Explainability helps understand model performance
- Explore H2O integration with scikit-learn, the Spring Framework, and Apache Storm
- Discover how to use H2O with Spark using H2O Sparkling Water

Who this book is for

This book is for engineers and data scientists who want to quickly adopt machine learning into their products without worrying about the internal intricacies of training ML models. If you're someone who wants to incorporate machine learning into your software system but don't know where to start or don't have much expertise in the domain of ML, then you'll find this book useful. Basic knowledge of statistics and programming is beneficial. Some understanding of ML and Python will be helpful.

商品描述(中文翻譯)

加速機器學習的採用,透過自動化 H2O.ai 的 ML 流程中複雜的部分

主要特點

- 學習如何使用 H2O AutoML 一鍵訓練最佳模型
- 獲得 H2O Explainability 對模型性能的簡單解釋
- 輕鬆使用 H2O MOJO 和 POJO 將訓練好的模型部署到生產環境

書籍描述

隨著互聯網上生成的數據量巨大,以及機器學習 (ML) 預測為企業帶來的好處,ML 的實施已成為每個人都在追求的低垂果實。然而,背後複雜的數學對許多用戶來說可能是令人沮喪的。這就是 H2O 的用武之地——它自動化了各種重複的步驟,這種封裝幫助開發人員專注於結果,而不是處理複雜性。

您將首先了解 H2O 的 AutoML 如何通過提供簡單易用的介面來簡化 ML 的實施,以訓練和使用 ML 模型。接下來,您將看到 AutoML 如何自動化訓練多個模型的整個過程,優化它們的超參數,以及解釋它們的性能。隨著進展,您將發現如何利用普通舊 Java 對象 (POJO) 和優化模型對象 (MOJO) 將您的模型部署到生產環境。在整本書中,您將採取實踐的方法來使用 H2O 實施,這將使您能夠迅速設置您的 ML 系統。

到這本 H2O 書的結尾,您將能夠使用 H2O AutoML 訓練和使用您的 ML 模型,從實驗到生產,完全不需要理解複雜的統計或數據科學。

您將學到的內容

- 熟悉 H2O AutoML 並學習如何使用它
- 探索 H2O Flow Web UI
- 理解 H2O AutoML 如何訓練最佳模型並自動化超參數優化
- 了解 H2O Explainability 如何幫助理解模型性能
- 探索 H2O 與 scikit-learn、Spring Framework 和 Apache Storm 的整合
- 發現如何使用 H2O 與 Spark 結合 H2O Sparkling Water

本書適合誰

本書適合希望快速將機器學習納入其產品的工程師和數據科學家,而不必擔心訓練 ML 模型的內部複雜性。如果您想將機器學習整合到您的軟體系統中,但不知道從何開始或在 ML 領域沒有太多專業知識,那麼您會發現這本書非常有用。具備基本的統計和程式設計知識將是有益的。對 ML 和 Python 有一些了解將會有所幫助。

目錄大綱

1. Understanding H2O AutoML Basics
2. Working with H2O Flow (H2O's Web UI)
3. Understanding Data Processing
4. Understanding H2O AutoML Training and Architecture
5. Understanding AutoML Algorithms
6. Understanding H2O AutoML Leaderboard and Other Performance Metrics
7. Working with Model Explainability
8. Exploring Optional Parameters for H2O AutoML
9. Exploring Miscellaneous Features in H2O AutoML
10. Working with Plain Old Java Objects (POJOs)
11. Working with Model Object, Optimized (MOJO)
12. Working with H2O AutoML and Apache Spark
13. Using H2O AutoML with Other Technologies

目錄大綱(中文翻譯)

1. Understanding H2O AutoML Basics

2. Working with H2O Flow (H2O's Web UI)

3. Understanding Data Processing

4. Understanding H2O AutoML Training and Architecture

5. Understanding AutoML Algorithms

6. Understanding H2O AutoML Leaderboard and Other Performance Metrics

7. Working with Model Explainability

8. Exploring Optional Parameters for H2O AutoML

9. Exploring Miscellaneous Features in H2O AutoML

10. Working with Plain Old Java Objects (POJOs)

11. Working with Model Object, Optimized (MOJO)

12. Working with H2O AutoML and Apache Spark

13. Using H2O AutoML with Other Technologies