Machine Learning with R - Fourth Edition: Learn techniques for building and improving machine learning models, from data preparation to model tuning,
暫譯: 使用 R 的機器學習(第四版):學習從數據準備到模型調整的機器學習模型構建與改進技術
Lantz, Brett
- 出版商: Packt Publishing
- 出版日期: 2023-05-29
- 售價: $1,900
- 貴賓價: 9.5 折 $1,805
- 語言: 英文
- 頁數: 762
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801071322
- ISBN-13: 9781801071321
-
相關分類:
R 語言、Machine Learning
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,960CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA Fortran Programming (Paperback)
-
$1,672Learning R (Paperback)
-
$2,560$2,432 -
$1,176Aircraft Communications and Navigation Systems: Principles, Maintenance and Operation (Paperback)
-
$3,540$3,363 -
$2,500$2,375 -
$2,240An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$1,716Bioinformatics Data Skills: Reproducible and Robust Research with Open Source Tools (Paperback)
-
$2,200C in a Nutshell: The Definitive Reference, 2/e (Paperback)
-
$2,800$2,660 -
$1,918Introduction to Machine Learning with Python: A Guide for Data Scientists (Paperback)
-
$580$493 -
$720$568 -
$1,840Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning
-
$4,500$4,275 -
$2,224Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures
-
$700$665 -
$2,800$2,660 -
$2,600$2,470 -
$1,460$1,387 -
$1,580$1,548 -
$3,610Modern Data Science with R, 2/e
-
$1,892R in Action : Data Analysis and Graphics with R and Tidyverse, 3/e (Paperback)
-
$880$695 -
$3,230Data Mining: Concepts and Techniques, 4/e (Hardcover)
商品描述
Learn how to solve real-world data problems using machine learning and R
Key Features:
- The 10th Anniversary Edition of the bestselling R machine learning book, updated with 50% new content for R 4.0.0 and beyond
- Harness the power of R to build flexible, effective, and transparent machine learning models
- Learn quickly with this clear, hands-on guide by machine learning expert Brett Lantz
Book Description:
Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data.
Machine Learning with R, Fourth Edition provides a hands-on, accessible, and readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need for data pre-processing, uncovering key insights, making new predictions, and visualizing your findings. This 10th Anniversary Edition features several new chapters that reflect the progress of ML in the last few years and help you build your data science skills and tackle more challenging problems, including making successful ML models and advanced data preparation, building better learners, and making use of big data.
You'll also find updates to the classic R data science book to R 4.0.0 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Whether you're looking to take your first steps with R for machine learning or making sure your skills and knowledge are up to date, this is an unmissable read that will help you find powerful new insights in your data.
What You Will Learn:
- Learn the end-to-end process of machine learning from raw data to implementation
- Classify important outcomes using nearest neighbor and Bayesian methods
- Predict future events using decision trees, rules, and support vector machines
- Forecast numeric data and estimate financial values using regression methods
- Model complex processes with artificial neural networks
- Prepare, transform, and clean data using the tidyverse
- Evaluate your models and improve their performance
- Connect R to SQL databases and emerging big data technologies such as Spark, Hadoop, H2O, and TensorFlow
Who this book is for:
This book is designed to help data scientists, actuaries, data analysts, financial analysts, social scientists, business and machine learning students, and any other practitioners who want a clear, accessible guide to machine learning with R. No R experience is required, although prior exposure to statistics and programming is helpful.
商品描述(中文翻譯)
學習如何使用機器學習和 R 解決現實世界的數據問題
主要特色:
- 暢銷 R 機器學習書籍的第十周年紀念版,更新了 50% 的新內容,適用於 R 4.0.0 及以後版本
- 利用 R 的強大功能構建靈活、有效且透明的機器學習模型
- 通過機器學習專家 Brett Lantz 的清晰、實用指南快速學習
書籍描述:
機器學習的核心在於將數據轉化為可行的知識。R 提供了一套強大的機器學習方法,能夠快速且輕鬆地從數據中獲取洞察。
《使用 R 的機器學習(第四版)》提供了一本實用、易讀且可接觸的指南,幫助您將機器學習應用於現實世界的問題。無論您是經驗豐富的 R 使用者還是新手,Brett Lantz 都會教您數據預處理、發掘關鍵洞察、進行新預測和可視化結果所需的一切。本書的第十周年紀念版包含幾個新章節,反映了過去幾年機器學習的進展,幫助您提升數據科學技能,應對更具挑戰性的問題,包括成功構建機器學習模型、高級數據準備、建立更好的學習者以及利用大數據。
您還會發現經典的 R 數據科學書籍更新至 R 4.0.0,包含更新和更好的庫,關於機器學習中的倫理和偏見問題的建議,以及深度學習的介紹。無論您是希望在機器學習中邁出第一步,還是想確保您的技能和知識保持最新,這本書都是不可錯過的讀物,將幫助您在數據中發現強大的新洞察。
您將學到的內容:
- 學習從原始數據到實施的機器學習端到端過程
- 使用最近鄰和貝葉斯方法分類重要結果
- 使用決策樹、規則和支持向量機預測未來事件
- 使用回歸方法預測數值數據和估算財務價值
- 使用人工神經網絡建模複雜過程
- 使用 tidyverse 準備、轉換和清理數據
- 評估您的模型並改善其性能
- 將 R 連接到 SQL 數據庫和新興的大數據技術,如 Spark、Hadoop、H2O 和 TensorFlow
本書適合誰:
本書旨在幫助數據科學家、精算師、數據分析師、財務分析師、社會科學家、商業和機器學習學生,以及任何希望獲得清晰、易於理解的 R 機器學習指南的從業者。無需具備 R 的經驗,雖然先前接觸過統計學和編程會有所幫助。