Probabilistic Optimisation of Composite Structures
暫譯: 複合結構的機率優化

Kwangkyu Alex Yoo, Omar Bacarreza M. H.

  • 出版商: World Scientific Pub
  • 出版日期: 2025-04-17
  • 售價: $3,670
  • 貴賓價: 9.5$3,487
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1800616848
  • ISBN-13: 9781800616844
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book introduces an innovative approach to multi-fidelity probabilistic optimisation for aircraft composite structures, addressing the challenge of balancing reliability with computational cost. Probabilistic optimisation seeks statistically reliable and robust solutions by accounting for uncertainties in data, such as material properties and geometry tolerances. Traditional approaches using high-fidelity models, though accurate, are computationally expensive and time-consuming, especially when using complex methods like Monte Carlo simulations and gradient calculations.For the first time, the proposed multi-fidelity method combines high- and low-fidelity models, enabling high-fidelity models to focus on specific areas of the design space, while low-fidelity models explore the entire space. Machine learning technologies, such as artificial neural networks and non-linear auto-regressive Gaussian processes, fill information gaps between different fidelity models, enhancing model accuracy. The multi-fidelity probabilistic optimisation framework is demonstrated through the reliability-based and robust design problems of aircraft composite structures under a thermo-mechanical environment, showing acceptable accuracy and reductions in computational time.

商品描述(中文翻譯)

本書介紹了一種創新的多忠實度機率優化方法,針對航空器複合材料結構的挑戰,平衡可靠性與計算成本。機率優化透過考慮數據中的不確定性,例如材料特性和幾何公差,尋求統計上可靠且穩健的解決方案。傳統方法使用高忠實度模型,雖然準確,但計算成本高且耗時,特別是在使用複雜方法如蒙地卡羅模擬和梯度計算時。

首次提出的多忠實度方法結合了高忠實度和低忠實度模型,使高忠實度模型能專注於設計空間的特定區域,而低忠實度模型則探索整個空間。機器學習技術,如人工神經網絡和非線性自回歸高斯過程,填補了不同忠實度模型之間的信息空白,提升了模型的準確性。多忠實度機率優化框架通過在熱機械環境下的航空器複合材料結構的可靠性基礎和穩健設計問題進行演示,顯示出可接受的準確性和計算時間的減少。

最後瀏覽商品 (20)